
Prefix Codes for Power Laws
Michael B. Baer

23 N. Ellsworth Ave., Apt. 8
San Mateo, California USA

Email:icalbear@1̇eee.org

Abstract— In prefix coding over an infinite alphabet, methods
that consider specific distributions generally consider those that
decline more quickly than a power law (e.g., a geometric
distribution for Golomb coding). Particular power-law dis tri-
butions, however, model many random variables encountered
in practice. Estimates of expected number of bits per input
symbol approximate compression performance of such random
variables and can thus be used in comparing such methods.
This paper introduces a family of prefix codes with an eye
towards near-optimal coding of known distributions, precisely
estimating compression performance for well-known probability
distributions using these new codes and using previously known
prefix codes. One application of these near-optimal codes isan
improved representation of rational numbers.

I. I NTRODUCTION

Consider discrete power-law distributions, those of the form

p(i) ∼ ci−α (1)

for constantsc > 0 andα > 1, wherep(i) is the probability
of symbol i, and f(i) ∼ g(i) implies that the ratio of the
two functions goes to1 with increasingi. Such distributions
could be either inherently discrete or discretized versions of
continuous power-law distributions.

Several researchers in varied fields have, in classic papers
ranging from decades to centuries old, observed power-law
behavior for various discrete phenomena, from continued
fractions [1], [2] to Internet connections [3], [4]. Several recent
expositions survey this [3], [5], [6].

Exponential-Golomb codes [7] (generalizations of Elias’γ
code [8]) are a good fit for certain power laws [9], leading to
their widespread use in compressing video and numerical data
[9], [10]. However, there are few specific infinite-cardinality
power-law distributions that have been used to judge com-
pression performance of prefix codes. Only the Gauss-Kuzmin
distribution is considered in [11], [12], while the more recent
[4] analyzes zeta distributions for whichα ∈ (1, 2] in (1).

Here we propose simple codes which not only improve
upon existing codes for encoding symbols distributed accord-
ing to the Gauss-Kuzmin distribution — which applies to
representing rational numbers using continued fractions —
but also efficiently code other common distributions, such
as the zeta distribution with parameter2 [13], [14]. We
precisely estimate compression performance for dozens of
code/distribution combinations, concentrating on power laws
of the form (1) withα ∈ [2, 3], which, [5] notes, most power-
law distributions occurring in nature satisfy. However, [5] itself
includes phenomena withα as low as1.8 and as high as

3.51, and other papers, such as [15], find Internet phenomena
conforming toα as low as1.2. We therefore analyze some
codes lying outsideα ∈ [2, 3] as well.

II. BACKGROUND, FORMALIZATION , AND MOTIVATION

The most common infinite-alphabet codes are codes that
are optimal for geometric [16], [17] and geometrically based
[18]–[22] distributions. For geometric distributions, these are
known as Golomb codes, and are based on theunary code
— ones terminated by a zero, i.e., a code consisting of
codewords the form{1j0} for j ≥ 0. In a Golomb code
(Gk), a unary code prefix precedes a binary code suffix. This
binary suffix is acomplete binary code, in that it has (k)
codewords of the same length or length differing by at most
one (the first2⌈lg k⌉ − k items having length⌊lg k⌋ and the
last 2k− 2⌈lg k⌉ items having length⌈lg k⌉). For example, the
order-preserving complete binary code of size three which is
monotonically nonincreasing in length is{0, 10, 11}, so the
Golomb code G3 is {00, 010, 011, 100, 1010, . . .} (complete
suffix in boldface). Codes that exhibit an efficient coding rate
for infinite-support power laws, by contrast, are not known to
be optimal (excepting trivial examples for dyadic probability
mass functions).

We restrict ourselves to binary codes and assume without
loss of generality that the infinite-alphabet source emits sym-
bols drawn from the alphabetX = {1, 2, 3, . . .}. Symboli has
probability p(i) > 0, forming probability mass functionP =
{p(i)}. The source symbols are coded into binary codewords.
The codewordc(i) ∈ {0, 1}∗, corresponding to symboli,
has lengthn(i) ∈ Z+, thus defining length distributionN =
{n(i)}. An optimal code minimizes

∑

i∈X p(i)n(i) with the
constraint of being uniquely decodable; thus we consider two
codes with identical lengths equivalent.N corresponds to
at least one such code if and only if the Kraft inequality,
∑

i∈X 2−n(i) ≤ 1, is satisfied. We assume without loss of
generality that these codes are prefix codes, that is, codes
where there are no two codewords of the formc(i) and
c(j) = c(i)x, wherec(i)x denotes the concatenation of strings
c(i) and (nontrivial)x. (In a similar use of notation,0k and
1k denotek 0’s andk 1’s, respectively. Also,lg denoteslog2

and ln denotesloge, the natural logarithm.)
One cannot use the Huffman source coding algorithm [23]

to find an optimal code, as one can for a finite source alphabet.
However, it is sensible that a code over the integers should
be monotonic, that is, thatn(i) ≤ n(i + 1) for all i ≥ 0.
An exchange argument easily shows that this is necessary for



the code to be optimal given a distribution for whichp(i) >
p(i + 1) for all i.

Another desirable property is one we call “smoothness”:
Definition:We callN = {n(i)} j-smoothif, for everyi > j,

if n(i + 1) = n(i + 2), then n(i + 1) − n(i) ≤ 1, that is,
the sequence of codeword lengths has no “gaps” (wheren(i)
and n(i + 1) differ by more than1) followed by “plateaus”
(with multiple codewords —n(i + 1) andn(i + 2) — at the
same length);weakly smoothmeans that it isj-smooth for
somej. Thus, for anyj, a j-smooth code includes all weakly
smooth codes. Similarly,0-smooth (orstrongly smooth) codes
include all j-smooth (and thus weakly smooth) codes. Also,
we call aP = {p(i)} j-antiunary if, for every i > j, p(i) <
p(i + 1) + p(i + 2); antiunarymeans that it isj-antiunary for
somej.

Observation:No j-antiunary distribution has an optimal
code which is notj-smooth. Thus no antiunary distribution
has an optimal code which is not weakly smooth.

Proof: Suppose aj-antiunary distributionP has an
optimal code with lengthsN which is not j-smooth. Then
there exists ani > j such thatn(i + 1) = n(i + 2) and
n(i + 1) − n(i) > 1. ConsiderN ′ = {n′(i)} for which
n′(k) = n(k) except at valuesn′(i) = n(i) + 1, n′(i + 1) =
n(i+1)−1, andn′(i+2) = n(i+2)−1. ClearlyN ′ satisfies
the Kraft inequality and

∑

i p(i)n′(i) <
∑

i p(i)n(i), soN is
not optimal.

Every power law is antiunary, but most previously proposed
codes suitable for power-law distributions are not weakly
smooth, so they could not be optimal solutions, and it is
always a simple matter to improve such codes for use with
such distributions. This gives us reason to believe that, among
suboptimal codes, (weakly and/or strongly) smooth codes
might be better suited to these distributions than those that
are not smooth, something that is empirically confirmed in
the remainder of this paper.

We discuss suboptimal codes because, although optimal
codes always exist [24], there is no guarantee that optimal
codes would be computationally tractable, let alone computa-
tionally practical for compression applications. We thus judge
performance of candidate codes by expected number of bits
per coded symbol rather than by strict optimality. One of the
contributions of this paper is a comparison of various codes
for well-known power-law distributions.

III. A NEW FAMILY OF CODES FOR INTEGERS

We propose a family of monotonic, computational efficient,
0-smooth codes, starting with the code shown in the center set
of columns (n0(·) andc0(·)) of Table I, which is defined as

c0(i) =







0b(i − 1, 3), i < 4
1c0

(

i−2
2

)

0, i = {4, 6, 8, . . .}
1c0

(

i−3
2

)

1, i = {5, 7, 9, . . .}.

The termb(j, k) denotes the(j+1)th codeword of a complete
binary code withk items, e.g.,b(·, 3) = {0, 10, 11}. Thus, for
example,c0(12) = 1c0(5)0 = 11c0(1)10 = 110010. This is

thus straightforward to encode, decode, and write in the form
of an implicit infinite coding tree.

This code, like exponential-Golomb codes, is a modification
of the γ code. Whereas theγ code has anm-bit unary code
followed by a complete binary code for2m−1 items, Code0
follows the unary prefix by a complete binary suffix for3 ·
2m−1 items. This assures not only its monotonicity, but also
its 0-smoothness, due to the complete binary suffix being of
variable length. This and its similarity to theγ code, which
is not smooth, means that the code is especially suitable for
power laws.

Straightforward extensions of this can be obtained by mod-
ifying the coding tree. We can add ak-bit binary number
to each possible codeword — as in the fourth and fifth set
of columns in Table I — extending Code0 by adding a
fixed-length suffix in the same manner as exponential-Golomb
codes, that is,

ck(i) = c0

(

1 +

⌊

i − 1

2k

⌋)

b((i − 1) mod 2k, 2k)

wherek > 0 and b
(

(i − 1) mod 2k, 2k
)

is the k-bit repre-
sentation of(i − 1) mod 2k. Call any of the new extensions
Codek.

Another extension, similar to [9] and [25], involves first
coding with a finite code tree, then, if this initial codewordis
all 1’s, adding Code0. If we start as in a unary code and switch
to Code0 after κ ones, then let Code−κ denote the implied
code, e.g., Code−1, the second set of columns (n−1(·) and
c−1(·)) in Table I. Formally, fork = −κ < 0,

ck(i) =

{

1i−10, i ≤ −k

1(−k)c0(i + k), i > −k.

All codes presented here are0-smooth, and can be coded
and decoded using only additions, subtractions, and shifts
such that the total number of operations is proportional to
the number of encoded output bits.

Before comparing the performance of these codes to extant
codes, we should first be sure we are making a fair compar-
ison. For example, the “negative” codes (k < 0) previously
introduced have an analogue in exponential-Golomb codes,
and, indeed, at least one of these codes is used in the
H.264 video compression standard [9]. Therefore, for the
sake of comparison, we define exponential-Golomb codes with
parameterk < 0 to be defined as above; that is,

cEGk(i) =

{

1i−10, i ≤ −k

1(−k)cEG0(i + k), i > −k.

IV. A PPLICATION

Table II lists various distributions for which no optimal code
is known and estimates, in expected number of bits per input
symbol, of coding performance using several different codes.
Values in the table are shown to the calculated precision, and
values that are exactly calculated from infinite sums, rather
than estimated, are indicated by the reduced number of figures
(for integers) or through ellipses for5/3, ζ(1.5)/ζ(2.5), and
ζ(2)/ζ(3). The entropy and the expected number of bits per



Code−2 Code−1 Code0 Code1 Code2
i n−2(i) c−2(i) n−1(i) c−1(i) n0(i) c0(i) n1(i) c1(i) n2(i) c2(i)
1 1 0 1 0 2 0 0 3 0 0 0 4 0 0 00
2 2 10 3 1 0 0 3 0 1 0 3 0 0 1 4 0 0 01
3 4 11 00 4 1 0 1 0 3 0 1 1 4 0 1 0 0 4 0 0 10
4 5 11 01 0 4 1 0 1 1 4 10 0 0 4 0 1 0 1 4 0 0 11
5 5 11 01 1 5 1 100 0 4 10 0 1 4 0 1 1 0 5 0 1 0 00
6 6 11 100 0 5 1 100 1 5 10 1 00 4 0 1 1 1 5 0 1 0 01
7 6 11 100 1 6 1 101 00 5 10 1 01 5 10 0 0 0 5 0 1 0 10
8 7 11 101 00 6 1 101 01 5 10 1 10 5 10 0 0 1 5 0 1 0 11
9 7 11 101 01 6 1 101 10 5 10 1 11 5 10 0 1 0 5 0 1 1 00

TABLE I

FIVE OF THE CODES INTRODUCED HERE

H N∗ (estimate) Golin Codek l EGk/ζ/δ/ω Y Gk

Gauss-Kuzmin,α = 2 3.43253 3.47207 3.50705(1,2)
3.472346

(−1) 3.77915 3.50705(0) 3.48765 ∞
(∀k)

Y
ul

e-
S

im
on

α
=

ρ
+

1 ρ = 1 2.95215 2.98136 3.(1,2) 2.983338(−1) 3.17826 3.(0) 2.98138 ∞
(∀k)

ρ = 1.5 2.17073 2.21571 2 .22507 (1)
2.230792

(−2) 2.32233 2.23222(−1) 2.26031 2.85003(3)

ρ = 2 1.74685 1.83787 1 .84024 (1)
1.848484

(−4) 1.91747 1.84788(−1) 1.92361 2.(1)

ρ = 2.5 1.47629 1.62102 1 .62191 (1)
1.626668

(−5) 1.68947 1.63115(−2) 1.73044 2.66666 . . .(1)

ze
ta

α
=

s

s = 1.6 3.93017 3.95 4.0427(1)
3.995727

(−1) 4.32479 4.06504(0) 4.05307 ∞
(∀k)

s = 1.75 3.17604 3.1938 3.2331(1)
3.199677

(−1) 3.42948 3.23385(0) 3.21909 ∞
(∀k)

s = 2 2.36259 2.41766 2.43310(1)
2.417772

(−2) 2.53468 2.43310(−1) 2.43042 ∞
(∀k)

s = 2.5 1.46525 1.65431 1 .65767 (1)
1.658015

(−4) 1.70907 1.65943(−2) 1.71963 1.94737 . . .(1)

s = 3 0.97887 1.33453 1 .33504 (1) 1.336680(−4) 1.36956 1.33656
(−3) 1.41389 1.36843 . . .(1)

entropy estimated / ad hoc codes new codes previously known codes

TABLE II

COMPRESSION(IN BITS PER SYMBOL) AND CODE PARAMETER(WHERE APPLICABLE)

symbol of an (unknown) optimal code are also estimated, the
latter based on suboptimal codes. The Appendix explains the
methods by which the estimates are calculated.H denotes
the entropy of the distribution (H(P ) = −

∑

i p(i) lg p(i))
andN∗ (the expected codeword length of) the optimal code.
Golin denotes the best Golin code [26]; Codek denotes
the best of the codes introduced here;l denotes the Leven-
shtein (Levenxtein) code [27]; EGk/ζ/δ/ω denotes the best
of the exponential-Golomb codes [7], the extensions to the
exponential-Golomb codes in the previous section, the Elias
codes [8], and theζ codes [4], where codes in the exponential-
Golomb family are indicated by the code number (e.g., EG0,
Elias’ γ code, by0); Y denotes Yokoo’s code for the Gauss-
Kuzmin distribution [12]; and Gk denotes the best Golomb
code (with parameterk) [16]. These codes are defined in the
cited papers. In cases for which there are multiple codes and/or
parameters, the best one is chosen and indicated in superscript.

In Table II, the best code among previously known codes
and the new codes is in bold, and, if a Golin code is
better, this is in italics. Note that Golin codes do well for
inputs with rapidly declining probabilities, whereas Yokoo’s
code and the codes introduced here have the best results
for heavier tails. (Like the codes here, Yokoo’s code can be
viewed as a “smoothed” version of the exponential-Golomb
codes.) However, Golin codes, in being calculated on the fly,
are often impractical, both due to the potential for rounding
errors to lead to coding errors and due to the computational
complexity of the required floating point divisions. Note also
that ζ codes are never superior for these distributions, as they

were designed forα (in (1)) in the [1.06, 1.57] range, where
fewer practical distributions arise. On a related note, while
the ζ code ζ2 is superior toγ (EG0) for zeta codes with
s = α ∈ [1.27, 1.57], Code−1 is best fors = 1.53 (not shown
in the above table). For this distribution, Code−1 averages
4.537 bits per symbol input whileζ2 averages4.539 bits.
Similar results occur for slightly highers; the table includes
examples of highers values.

Code−1 is of particular interest as it happens to be an
excellent code for the Gauss-Kuzmin distribution, defined (and
well-approximated) as follows:

pGK(i) , − lg

[

1 −
1

(i + 1)2

]

≈
lg e

(i + 1)2

The Gauss-Kuzmin distribution is the one for which to code
when expressing coefficients of continued fractions, as in [11],
[28], in which EG0 is proposed for use, and [12], in which
Yokoo’s code is proposed. Code−1 is only about0.008%
worse than the (approximated) optimal code, whereas Yokoo’s
code is0.449% worse and the Eliasγ code (EG0) is 1.007%
worse. Each of these codes provides a method for expressing
rational numbers without round-off as their continued fraction
representation; see [11], [12] for details, which are omitted
here for space. This representation isalphabetic or order
preservingif the code is; a code is order preserving ifc(i, j)
is the jth bit of the ith codeword, thenc(i + 1, j) < c(i, j)
only if there is ak < j such thatc(i + 1, k) 6= c(i, k). The
codes presented here are order preserving due to the unary
prefix and complete binary suffix being monotonic and order



preserving in Code0; the order preservation of other codes
follows. Code−1 thus provides an improved representation
over prior codes.

Note also that Code−2 is a good code for the zeta
distribution with parameters = α = 2, where the zeta
distribution is defined as

pζ
s(i) ,

1

isζ(s)

andζ is the Riemann zeta functionζ(s) ,
∑∞

i=1 i−s for s >
1. The zeta distribution is used to model several phenomena
including language [29] and Internet phenomena [15]. Optimal
codes for the zeta2 distribution (s = 2) were considered
in Kato’s unpublished manuscript [14], in which the optimal
codeword lengths for the first ten symbols are shown to lie
in ranges of two possible values for each codeword (or one
for the first, which hasn(1) = 1). The codeword lengths of
Code−2 all lie within the allowed ranges. However, we can
empirically find better codes, showing that Code−2, although
the best simply described code we know of, is about0.005%
worse than an optimal code.

A third distribution family is that of Yule [30] and Simon
[31],

pYS
ρ (i) , ρB(i, ρ + 1)

(

pYS
ρ (i) = ρ

(i − 1)!ρ!

(ρ + i)!

)

where B(i, j) is the beta function,ρ = α − 1 > 0, and
the right equation applies for integerρ. Thus, for example, if
ρ = 1, thenp(i) = 1/i(i + 1). Several statistics, from species
population to word frequencies, have been observed to obey
a Yule-Simon distribution, most often with parameterρ = 1
[31]. This particular distribution is also related to continued
fractions, being the distribution of the first coefficient ofa
continued fraction of a number chosen uniformly over the unit
interval (0, 1). For P YS

1 , Yokoo’s code is0.066% better than
Code−1, and a mere0.0007% worse than an optimal code.

As in many previous papers on these and similar codes [7],
[32], the best code is chosen by its empirical performance; as
with exponential-Golomb codes, there appears to be no simple,
accurate, analytically derived rule for deciding which code to
use.

We find that the codes introduced here do quite well, only
failing to improve upon previously known codes in one case
with α ∈ [2, 3) — α as in (1) — the Yule-Simon distribution
with parameterρ = 1 (p(i) = 1/i(i + 1)). Because Yokoo’s
code, the best code for this instance, requires computing
codewords for complete binary codes with unequal codeword
lengths, Code−1 introduced here might still be preferable
in this instance, requiring less computation to encode and
decode. For all tested distributions, Yokoo’s code and the codes
introduced here are both strict improvements on exponential-
Golomb and Elias codes, confirming that, in practice,0-smooth
codes are very often preferable to those lacking this property.

Note that not all known codes for integers were tested here;
certain codes can be ruled out due to the length of the first
few codewords (e.g., Even-Rodeh [33], Zeta codes withk > 2

[4]), whereas others have significantly higher computational
complexity (e.g., Fibonacci [34], [35]). In comparison to
other feasible codes, the codes introduced here are a notable
improvement. While not optimal, they can be quite useful in
practical applications.

APPENDIX

Codeword lengths for infinite codes are estimated in rela-
tively simple fashion, as more complex methods are unnec-
essary. Golin codes are each estimated based on the partial
code and conditional entropy of the remaining items; we omit
details for space. For other codes, some expected lengths are
exactly known. The unary (G1) code is a mean value, which
is known in the case of zeta and Yule-Simon distributions,
while the average length of the Eliasγ code (EG0) code for
Yule-Simon withρ = 1 is easily calculated as

∞
∑

i=1

p(i)n(i) = 1 + 2

∞
∑

i=1

⌊lg i⌋

i(i + 1)
= 1 + 2

∞
∑

j=0

j2−j−1 = 3.

Golin’s algorithms both result in the same code for this dis-
tribution, since the algorithms’ conditions result in groupings
of probabilities summing to powers of two.

Optimal expected codeword lengths are estimated using an
optimal code for a truncated distribution and the entropy of
the remaining items; although not having the same guaranteed
accuracy, the results seem to provide accurate estimates based
upon the behavior of coding truncated probability distributions
of increasing size. In [24], it is shown that sequences of such
truncated distributions always have a subsequence converging
to the optimal code, providing theoretical justification for
the use of this technique, which also causes distributions for
especially heavy tails, e.g., zeta distributions withs < 2, to
be estimated with lower precision.

For most code/probability combinations considered here,
we have that they are monotonic and we can findα, β, κ >
0, µ, ξ > 0, τ > 0, υ > 0, φ > 0 such that

n(i) ∈ [τ ln(i + µ + 1) + α, υ ln(i + µ) + β]

and monotonic

p(i) ∈

[

φ

(i + κ)ξ+1
,

φ

iξ+1

]

for large enoughi ≥ imin. Then, forx > imin, we have
∞
∑

i=x

p(i)n(i) ≥

∫ ∞

x

p(i)n(i − 1)di

≥

∫ ∞

x

τφ ln(i + µ) + αφ

(i + κ)ξ+1
di

≥ φ

∫ ∞

x

τ ln(i + κ) + τfmin(x) + α

(i + κ)ξ+1
di

=
τφ ln(x + min(κ, µ)) + τφξ−1 + αφ

ξ(x + κ)ξ

wherefmin(x) = min(ln(x+µ)− ln(x+κ), 0), and, similary,
∞
∑

i=x

p(i)n(i) ≤
υφ ln(x + max(−1, µ)) + υφξ−1 + βφ

ξ(x − 1)ξ



providing upper and lower bounds to average codeword length
using codeN = {n(i)} for probability distributionP =
{p(i)}. Other distributions (such as Golomb codes) and Shan-
non entropy can be bounded similarly. Such an approach
enables us to find estimates with accuracies limited only by
the precision of the partial summations (i.e., round-off error).
For the probability distributions currently under consideration,
we have:

ξ φ κ
PGK 1 1 lg e
P YS

ρ ρ ρ ρΓ(ρ + 1)
P ζ

s 0 s − 1 ζ−1(s)

For γ [8], Yokoo [12], Levenshtein (Levenxtein) [27],
and ζ2 [4] codes, and for the Codes and extensions of the
exponential-Golomb introduced here,α, β, µ, τ > 0, υ > 0
can be

α β µ τ υ
γ, Yokoo −1 1 0 2 lg e 2 lg e

l 2 2 −1 lg e 2.5 lg e
(i > 1)

ζ2 0 2 0 1.5 lg e 1.5 lg e
EG k −1 − k 1 − k k 2 lg e 2 lg e
(k ≤ 0)

(i > −k)

Codek α0 − k −1 − k 2 + k 2 lg e 2 lg e
(k ≤ 0)

(i > −k)

where α0 = 1 − 2 lg 3. (Parameters for other codes can be
similarly formulated, but these are unused here due to their
inferiority at the distributions in question.)

For finding the best code within code families with multiple
codes — such as Codek, EGk, and Gk (Golomb codek,
defined in the main text) — partial sums can be used to limit
the number of codes tested to a finite number. For example,
these codes haven(1) → ∞ as k → +∞, so at some point
p(1)n(1) will be too large to consider Codek with parameters
k > kmax for somekmax. Similarly, ask → −∞, the unary
portion of the code can be used for the partial sum.

REFERENCES

[1] C. F. Gauss, “Eine Aufgabe der Wahrscheinlichkeitsrechnung,” 1800, in
Werke Sammlung, Band 10 Abt 1, pp. 552–556, available from http:
//www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235957348.

[2] R. O. Kuzmin, “Sur un problème de Gauss,” inAtti del Congresso
Internazionale dei Matematici, vol. 6, Sept. 1928, pp. 83–89.

[3] M. Mitzenmacher, “A brief history of generative models for power law
and lognormal distributions,”Internet Math., vol. 1, no. 2, pp. 226–251,
2004.

[4] P. Boldi and S. Vigna, “Codes for the World-Wide Web,”Internet Math.,
vol. 2, no. 4, pp. 407–429, 2005.

[5] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemporary Physics, vol. 46, no. 5, pp. 323–351, Sept. 2005.

[6] N. N. Taleb, The Black Swan: The Impact of the Highly Improbable.
New York, NY: Random House, 2007.

[7] J. Teuhola, “A compression method for clustered bit-vectors,” Inf.
Processing Letters, vol. 7, no. 6, pp. 308–311, Oct. 1978.

[8] P. Elias, “Universal codeword sets and representationsof the integers,”
IEEE Trans. Inf. Theory, vol. IT-21, no. 2, pp. 194–203, Mar. 1975.

[9] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 13, no. 7, pp.
620–636, July 2003.

[10] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,”IEEE Trans. Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[11] D. W. Matula and P. Kornerup, “An order preserving finitebinary
encoding of the rationals,” inProc., 6th Symposium on Computer
Arithmetic, 1983, pp. 201–209.

[12] H. Yokoo, “An efficient representation of the integers for the distribution
of partial quotients over the continued fractions,”J. Inform. Processing,
vol. 11, no. 4, pp. 288–293, 1988.

[13] S. W. Golomb, “A class of probability distributions on the integers,”
Journal of Number Theory, vol. 2, no. 2, pp. 189–192, May 1970.

[14] A. Kato, “Huffman-like optimal codes and search codes for infinite
alphabets,” 1997, unpublished manuscript.

[15] P. Boldi and S. Vigna, “The WebGraph framework I: Compression tech-
niques,” inProc. Thirteenth International World Wide Web Conference.
ACM Press, 2004, pp. 595–601.

[16] S. W. Golomb, “Run-length encodings,”IEEE Trans. Inf. Theory, vol.
IT-12, no. 3, pp. 399–401, July 1966.

[17] R. G. Gallager and D. C. van Voorhis, “Optimal source codes for
geometrically distributed integer alphabets,”IEEE Trans. Inf. Theory,
vol. IT-21, no. 2, pp. 228–230, Mar. 1975.

[18] J. Abrahams, “Huffman-type codes for infinite source distributions,”
Journal of the Franklin Institute, vol. 331B, no. 3, pp. 265–271, May
1994.

[19] T. Chow and M. Golin, “Convergence and construction of minimal-cost
infinite trees,” inProc., 1998 IEEE Int. Symp. on Information Theory,
Aug. 1998, p. 227.

[20] N. Merhav, G. Seroussi, and M. Weinberger, “Optimal prefix codes
for sources with two-sided geometric distributions,”IEEE Trans. Inf.
Theory, vol. IT-46, no. 2, pp. 121–135, Mar. 2000.

[21] M. J. Golin and K. K. Ma, “Algorithms for constructing infinite Huffman
codes,” Hong Kong University of Science & Technology Theoretical
Computer Science Center, Tech. Rep. HKUST-TCSC-2004-07, Aug.
2004, available from http://www.cs.ust.hk/tcsc/RR/index 7.html.

[22] F. Bassino, J. Clément, G. Seroussi, and A. Viola, “Optimal prefix
codes for two-dimensional geometric distributions,” inProc., IEEE Data
Compression Conf., Mar. 28–30, 2006, pp. 113–122.

[23] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[24] T. Linder, V. Tarokh, and K. Zeger, “Existence of optimal prefix codes
for infinite source alphabets,”IEEE Trans. Inf. Theory, vol. IT-43, no. 6,
pp. 2026–2028, Nov. 1997.

[25] P. A. Humblet, “Optimal source coding for a class of integer alphabets,”
IEEE Trans. Inf. Theory, vol. IT-24, no. 1, pp. 110–112, Jan. 1978.

[26] S. J. Golin, “A simple variable-length code,”Signal Processing, vol. 45,
no. 1, pp. 23–35, Mar. 1995.

[27] V. I. Levenshtein, “On the redundancy and delay of separable codes
for the natural numbers (ob izbytoqnosti i zamedlenii
razdelimogo kodirovani� naturalьnyh qisel),”
Problems of Cybernetics, vol. 20, pp. 173–179, 1968.

[28] P. Kornerup and D. W. Matula, “LCF: A lexicographic binary repre-
sentation of the rationals,”J. Universal Comput. Sci., vol. 1, no. 7, pp.
484–503, July 1995.

[29] G. K. Zipf, “Relative frequency as a determinant of phonetic change,”
Harvard Studies in Classical Philology, vol. 40, pp. 1–95, 1929.

[30] G. U. Yule, “A mathematical theory of evolution, based on the conclu-
sions of Dr. J. C. Willis, F.R.S.”Philos. Trans. Roy. Soc. London Ser. B,
vol. 213, pp. 21–87, 1925.

[31] H. A. Simon, “On a class of skew distribution functions,” Biometrika,
vol. 42, no. 3/4, pp. 425–440, 1955.

[32] J. Wen and J. D. Villasenor, “Structured prefix codes forquantized
low-shape-parameter generalized Gaussian sources,”IEEE Trans. Inf.
Theory, vol. IT-45, no. 4, pp. 1307–1314, May 1999.

[33] S. Even and M. Rodeh, “Economical encoding of commas between
strings,” Commun. ACM, vol. 21, no. 4, pp. 315–317, Apr. 1978.

[34] R. M. Capocelli and A. De Santis, “On the redundancy of optimal codes
with limited word length,” IEEE Trans. Inf. Theory, vol. IT-38, no. 2,
pp. 439–445, Mar. 1992.

[35] A. Apostolico and A. S. Fraenkel, “Fibonacci representation of strings
of varying length using binary separators,”IEEE Trans. Inf. Theory, vol.
IT-33, no. 2, pp. 238–240, Mar. 1987.


