
CODING FOR GENERAL PENALTIES

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Michael B. Baer

June 2003

c Copyright by Michael B. Baer 2003

All Rights Reserved

ii

iii

iv

Abstract

Hu�man coding �nds a pre�x-free code that minimizes the expected codeword length

for a probability mass function. However, there are many practical situations in which

the constraints and goals may be di�erent from the linear penalty of minimizing ex-

pected length. For example, we may wish to avoid long codewords in some situations,

since these may cause an excessive wait for transmission of unlikely events. There-

fore, we may desire a nonlinear penalty in the codeword lengths. Such penalties arise

naturally in group testing for diagnostic systems, queueing, remote exploration, and

military intelligence.

We examine families of coding problems with nonlinear penalties. These include

generalizations of Hu�man coding suitable for communication and analysis, extending

instances of source coding found in the literature. Alternative penalty measures

previously considered include exponential average in [15, 18, 39, 45, 53, 55, 78, 87] and

maximal pointwise redundancy in [24]. We �nd a novel framework encompassing

these two penalties, as well as the linear and other natural penalties, resulting in

properties and algorithms suitable for all of them.

We next turn to generalized quasilinear convex penalties; these are penalties that

can be formulated as
P

i f(li; pi), where li denotes the length of the ith codeword,

pi denotes the corresponding probability, and f is convex and increasing in li. This

class of penalties includes several previously proposed penalties, among them a general

convex problem proposed by Campbell in [15]. We give an eÆcient algorithm that, for

Campbell's problem, performs the optimization in quadratic time and linear space; we

also present penalty bounds for this solution. Finally, we consider coding for in�nite

alphabets, a problem not fully understood even for the linear penalty.

v

Acknowledgments

The road has been a long and interesting one, and I am indebted to several fellow

travelers, mentors, helpers, and companions. The Alma M. Collins Fellowship, a

Stanford Graduate Fellowship, gave me the freedom to �nd my own way. Without

this support, this thesis would not have been possible. Support from the National

Science Foundation and the Multidisciplinary University Research Initiative was also

instrumental in funding my research.

The Information Theory Group has provided the ideal environment for living

life and engaging in academic thought, punctuated by conversations about sports,

movies, and gambling. In addition to Professor Cover, I should thank to those who

came before I did (Suhas Diggavi, Paul Fahn, Yiannis Kontoyiannis, Assaf Zeevi, and

Arak Sutivong) and those who came after (Young-Han Kim, Styrmir Sigurjonsson,

and George Gemelos). But I am especially thankful to my contemporaries, Mung

Chiang, Jon Yard, Joshua Sweetkind-Singer, and particularly David Julian. They

have all provided help in the form of everything from references to proofreading and

research thoughts to word choice.

In addition to these colleagues are those teachers and mentors who were of special

help. Stephen Boyd was especially helpful and patient regarding matters of convexity.

Literature help was provided by Donald Knuth of Stanford, Wojciech Szpankowski

of Purdue, George Turin of Berkeley, D. Stott Parker of UCLA, Mordecai Golin of

the Hong Kong University of Science and Technology, and Alistair Mo�at of the

University of Melbourne. Additional literature pointers were provided by Hewlett-

Packard Labs' Gadiel Seroussi and Marcelo Weinberger, who were also my mentors

during my extended internship at HPL. They sparked an interest in source coding,

vi

security, and R�enyi entropy, which has continued throughout my doctoral research.

I'd like to extend special thanks to T. C. Hu, who was able to comment on an

early draft of my work, and to Andrew Brzezinski, my former roommate, for providing

feedback at many points in my journey.

I also wish to thank my parents for their support and for only occasionally asking

me when I was going to graduate. I want to thank friends and loved ones for their

support as well.

Last but not least, I would like to thank my thesis readers as well as my orals

chairman. Mine is the �rst Stanford oral session Joseph Kahn has chaired, and I

chose him to do so because he taught the class that was my introduction to the

�eld, the introductory class in information systems at UC Berkeley. Benjamin Van

Roy came on relatively recently and has been a warm and receptive audience, with

perceptive and thought-provoking views of my research. My co-advisor, John Gill,

has been a great resource on matters regarding classical Hu�man coding and the �ner

points of writing. Finally, great thanks is owed to my advisor, Thomas Cover, for

the opportunity, the support, and the freedom necessary for this research. The spirit

he imparts onto a diverse and eclectic research group is evident any time we meet,

and his much-noted curiosity about aesthetically pleasing problems | as well as his

innovation in �nding solutions | inspired this work.

vii

Notation

Notation Meaning

2 a member of

� a subset of

� a strict subset of

, is de�ned as

XnY set X excluding those elements in Y

[x; y) the interval from x to y, including x but excluding y

b�c the largest integer at most �

d�e the smallest integer at least �

h�i the fractional part of �, (�)� b�c

S = fx; y; : : :g a set

jSj the number of items (possibly +1) in set S

c � S the set consisting of cs for each s 2 S

�S the set consisting of �s for each s 2 S

f� j A(�)g the set of � such that A(�) is satis�ed

v = (v1; v2; : : :) a (possibly in�nite-element) vector

v(i); vi the ith element of vector v

c � v constant c multiplied by each element of vector v

v �w all possible products of elements of v and w

v � w vi � wi 8 i

x+ max(0; x)

viii

x� min(0; x)

~x a modi�ed version of x

xmax a maximum value for x

xmin a minimum value for x

x� optimal value for x

xy, xz optimal value for x with relaxed constraints

f�1 the inverse function of f

[yi=xS(i) the union of sets S(x); S(x+ 1); : : : ; and S(y)

; the empty set

0 a vector of all zeroes (dimension clear from context)

0k a string of k zeroes

f0; 1g� the set of all �nite length binary sequences

f0; 1gk the set of all length k binary sequences

1� 1 if � is true, 0 otherwise

2S the set consisting of 2s for each s 2 S

8 for all (meaningful instances of)

9 there exists (a meaningful instance of)

�0
n the set of probability distributions over n items,

none with probability zero

�(�) the Zeta function,
P+1

k=1 k
��

� = �(X(b)) limb!c
j�j

jX(b)j exists, is nontrivial, and is �nite.

(The value of c, usually +1 though often �1 or 0,

is always implied by the context.)

� a null valueQy
i=x f(i) product of f(i) from i = x to yQ
i f(i) product of f(i) for all meaningful values of iPy
i=x f(i) sum of f(i) from i = x to yP
i2X f(i) sum of f(i) for all i 2 X

ix

P
i f(i) sum of f(i) for all meaningful values of i

� the Golden Mean,
p
5+1
2

argmaxiX(i) value of i for which X(i) is maximized

argminiX(i) value of i for which X(i) is minimized

c(i); ci the ith codeword

Cn the set of functions for which derivatives up to the nth

exist and are continuous

CX a code for alphabet X

CATyi=x c(i) concatenation of c(x); c(x+ 1); : : : ; and c(y)

D(p k q) Kullback Leibler divergence
hP

k pk lg
pk
qk

i
D�(p k q) R�enyi divergence

h
1

��1 lg
�P

k

p�k
q��1

k

�i
e base of the natural logarithm, e = 2:7182818284 : : :

Ep[f(X)] The expected value of f(X) under p,
P

i pif(i)

H(p) Shannon entropy [�
P

k pk lg pk]

H�(p) R�enyi (�-)entropy
�

1
1�� lg

P
k p

�
k]
�

H(p; f) Generalized entropy for function f

i� if and only if

infi2B X(i) the value for which no X(i) is smaller

but there is an X(i) arbitrarily close (i 2 B)

l(i); li the length of the ith codeword

LX the codeword lengths of CX

L0X � LX L0X is at least LX in terms of lexicographical order

(with lengths sorted in nonincreasing order)

LX + c constant c added to each element of vector LX

LX + L0~X the lengths of the tree created by having LX as

the subtree of one child of the root and L0~X as

the subtree of the other

lyi (b;p) ideal codeword length
h
� 1

1+b
lg pi + lg

�P
j pj

1

1+b

�i

x

lgn logarithm of n base 2

lim
i"c

X(i) limit of c approaching from below

lim
i#c

X(i) limit of c approaching from above

lim
i!c

X(i) limit of c (" if c = +1, # if c = �1)

lim inf
i!+1

X(i) lim
c!+1

finf
i�c

X(i)g

lim sup
i!+1

X(i) lim
c!+1

f� inf
i�c

[�X(i)]g

lnn natural logarithm of n (base e)

loga n logarithm of n base a

logn logarithm of n in any base

mi the ith item

max(a; b) the maximum of a and b

maxiX(i) the maximum value of X(i) (assumes this exists)

min(a; b) the minimum of a and b

miniX(i) the minimum value of X(i) (assumes this exists)

min+i;j i;j the minimum strictly positive value of i;j

n size of the current problem, usually jX j

N f1; 2; 3; : : :g

Nk f0; 1gkn0k

NS(i) the number of occurrences of i in sequence S

� = O(X(b)) lim
b!c

j � j

jX(b)j
exists and is �nite.

(The value of c, usually +1 though often �1 or 0,

is always implied by the context.)

PfAg the probability of A

PXfA(X)g the probability of A (a function of random variable X)

p; q probability vectors (elements sum to 1)

R the set of real numbers

R
+ the set of nonnegative real numbers

R
n the set of real-numbered n-vectors

xi

R
+1 the set of real-numbered countable-element vectors

S(�) f1; 2; : : : ; �g

sgn(x)

8>><
>>:

1; x > 0

0; x = 0

�1; x < 0

T (�) NnS(�) = f(�) + 1; (�) + 2; : : :g

v;w weight vectors (elements do not necessarily sum to 1)

X an alphabet

Z the set of integers, f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g

xii

Contents

Abstract v

Acknowledgments vi

Notation viii

1 Introduction 1

1.1 An introductory problem . 1

1.2 Motivation . 2

1.3 Formalization . 3

1.4 Prior work . 9

1.5 Organization . 11

2 Exponential penalties 12

2.1 Nonlinear penalties . 12

2.2 An exponential penalty . 15

2.2.1 Motivation . 15

2.2.2 Real-valued problem solution and bounds 17

2.2.3 Integer-valued problem solution and algorithm 19

2.3 Properties of the exponential penalty 26

2.3.1 Sibling property . 26

2.3.2 Interval properties . 30

2.4 Another exponential penalty . 33

2.4.1 Motivation . 33

xiii

2.4.2 Problem structure and solution 34

2.5 Properties of both exponential penalties 36

2.5.1 Sibling property . 36

2.5.2 Properties on the real line . 37

2.5.3 Interval properties . 40

2.6 Extending to other penalties . 45

3 Redundancy penalties 48

3.1 Motivation, method, and properties 48

3.1.1 d-average b-redundancy (DABR) 48

3.1.2 Special cases . 52

3.1.3 Bounds . 54

3.2 Minimizing maximal pointwise redundancy 57

3.2.1 Minimax redundancy as a generalized Shannon code 58

3.2.2 Minimax redundancy as minimal DABR 59

3.2.3 Linear time methods for minimax redundancy 62

4 Generalized quasilinear convex penalties 67

4.1 Introduction and motivation . 67

4.2 Bounds . 69

4.3 The Coin Collector's problem . 73

4.3.1 Problem statement and properties 73

4.3.2 Package-Merge algorithm and proof of correctness 74

4.4 Overall algorithm . 75

4.5 A linear space algorithm . 80

4.6 Further algorithmic optimization . 84

4.7 Examples . 85

4.8 Extending to more exotic penalties 86

4.9 Review of �nite alphabet coding cases 88

5 Extensions to in�nite alphabets 89

5.1 Motivation . 89

xiv

5.2 Properties of optimal in�nite item codes 92

5.3 Extending to other penalties . 97

5.3.1 Existence of optimal codes . 97

5.3.2 Construction of optimal codes 103

6 Concluding Remarks 106

6.1 Summary of contributions . 106

6.2 Extensions and future directions . 107

Bibliography 109

xv

List of Tables

1.1 Examples of penalty functions . 8

xvi

List of Figures

1.1 A �ve-codeword pre�x-free code CX represented by a binary tree . . . 5

1.2 Penalty classes we consider in this dissertation 11

2.1 Representations of a pre�x-free code as a tree and as subintervals of

[0; 1) . 13

2.2 Hu�man coding, p = (0:36; 0:30; 0:20; 0:14) 23

2.3 Exponential Hu�man coding, p = (0:36; 0:30; 0:20; 0:14) and a = 1:1 . 24

2.4 Tree representation of a partition of the alphabet X 27

2.5 Three optimal coding trees, p = (3
8
; 3
16
; 1
8
; 3
32
; 1
16
; 3
64
; 1
32
; 1
32
; 3
128
; 3
128

) . . . 29

2.6 Bottom-merging versus top-merging 32

2.7 Optimal code trees for two di�erent distributions over the range of b 2 R 39

3.1 Parameter space for minimal DABR coding with notable special cases 53

3.2 Regions of optimality in parameter space for minimal DABR coding,

p = (0:58; 0:12; 0:11; 0:1; 0:09) . 55

3.3 Range of d | ordered by 1
1+d

| with [dmm;+1] shaded 58

3.4 Algebraic minimax redundancy coding, p = 1
19
� (8; 4; 3; 2; 2) (bottom-

merge) . 64

3.5 Top-merge minimax redundancy coding, p = 1
19
� (8; 4; 3; 2; 2) (single

variable) . 64

4.1 A simple example of the Package-Merge algorithm 76

4.2 The set of nodes I with widths (�(i; l)'s) and weights (�(i; l)'s) for

f(l; p) = pl2, n = 4, lmax = 3 . 77

xvii

4.3 The set of nodes I, an optimal nodeset N , and disjoint subsets A, B,

C, D . 82

5.1 Sample coding trees for in�nite alphabets 91

5.2 More examples of in�nite coding trees 94

xviii

Chapter 1

Introduction

In source coding problems | often grouped under the term \lossless compression" |

the goal is to translate (or \map") a data object into bits. The method of mapping is

termed the code, and is often said to consist of a set of codewords, each being a string

of 0's and 1's corresponding to a possible object. The object may be text, image,

or other data, but the objective is almost always the smallest data representation

possible for storage or transmission. The measure of success is usually the expected

number of bits.

1.1 An introductory problem

The game of twenty questions | in which one is challenged to identify an item by

asking up to twenty \yes" or \no" questions | is often cited when explaining source

coding and entropy, that most basic of information-theoretic concepts [7,82]. Indeed,

the general problem of binary coding, �nding a representation of a possibility in

terms of sequences of bits | \yes" or \no" questions | is also encountered in twenty

questions. By de�ning di�erent rules for this game, we may present information

theoretic topics within the context of the game, yielding formulations for constrained

coding and error correction/detection decoding.

However, there is at least one vital di�erence between standard coding and twenty

questions: In the actual game of twenty questions, minimization of mean length is

1

2 CHAPTER 1. INTRODUCTION

not in fact the goal. The goal instead is to maximize the probability that we name

the correct item within twenty questions, that is, to solve

argmax
l

PXfl(X) � 20g = argmax
l

EX [1l(X)�20] (1.1)

where X is the random variable to be coded, l(x) is the length of the codeword

representing instance x, l is the set (or vector) of these lengths, and 1� is 1 if � is

true, 0 otherwise. In this form of twenty questions, if there are a very large or in�nite

number of items to choose from, we should consider only the most likely items. These

we should code with all but one of the admissible sequences, leaving the last of the 220

admissible sequences to correspond to \everything else." If pi is the probability of the

ith most likely item, this would yield a success rate of PXfl(X) � 20g =
P220�1

i=1 pi.

Twenty questions, although admittedly fabricated, nevertheless reminds us that

there are practical situations in which the goal is not achieving the optimal expected

rate. Only in coding for high-rate communications is expected rate the precise con-

cern, so we may want to generalize beyond minimizing expected codeword length.

1.2 Motivation

Practical problems in which the goal is not minimizing mean length include those

involving remote exploration, military applications, and group testing for diagnostic

systems, e.g., blood testing, in which each binary result is like a communicated bit

[46, 56]. In such situations, at least one direction of communication may enable

only a handful of crucial bits to be sent | a natural channel may have nearly zero

bandwidth, a mission-critical channel may at times be jammed by an adversary, and

blood tests may be costly and time-consuming. In such situations, it is not clear that

mean length should be the measure of success; we �nd it is often not.

If there are several requests for information, second-order delay e�ects [58] and

�nite bu�er space [45] may also be considerations. For these queueing-related ap-

plications, we assume service time is a linear function of codeword length. In [45],

Humblet minimized probability of bu�er overow, considering the reality of limited

1.3. FORMALIZATION 3

bu�er space. In [58], Larmore considered a case in which the information requests are

asynchronous; here long codewords may delay vital communication through a channel

due to the \slow truck e�ect," the phenomenon in which many small packets (i.e.,

short codewords or fast cars) are held up by one long packet (long codeword or slow

truck) [30].

In addition, even a channel that has moderate to high ergodic (Shannon) capacity,

may, within certain time periods, not allow a large number of bits to be sent. Users

of mobile devices should be familiar with this phenomenon. We may thus put a high

priority on receipt of a critical message.

In his 1969 book, A Diary on Information Theory [82], R�enyi related a similar

situation. It is based on an event said to have occurred during the Bar Kochba revolt

of AD 132{135, a revolt against Roman plans to build a pagan temple on top of

the ruins of the Jewish Temple in Jerusalem. At the time, a siege of indeterminate

length restricted the ow of military intelligence to a small number of \yes" and \no"

questions. Getting vital information through such questions is not an archaic problem;

a recent example of a similar siege with a binary lossless channel was reported in

2002 [70]. We may ask what the coding strategy should be for sending a message

necessary to defend a fortress under siege. We will �nd that this too is a nonlinear

problem.

Sequences of bits may be nonlinearly penalized in many instances. To frame such

problems, one may use some sort of criterion, or penalty function. The penalty is

selected according to the value of obtaining the information with a certain number of

codeword bits, or, equivalently, to obtaining it with a certain number of tests or in a

certain amount of time.

1.3 Formalization

Let us briey formalize the standard coding problem so that we can properly gener-

alize it to other penalties. Each codeword, or sequence of answers to predetermined

questions, is in f0; 1g�, the set of all �nite sequences of 0's and 1's (or \no"s and

\yes"s, respectively).

4 CHAPTER 1. INTRODUCTION

We wish to assign such binary codewords to an alphabet, X . We may assume,

without loss of generality, that X = f1; 2; : : : ; ng for some n = jX j if jX j < +1 and

X = N , f1; 2; : : :g otherwise. The ith member of X is thus the integer i, although

when we wish to explicitly indicate we are referring to member i, we use mi.

The random variable we are coding, X, is chosen such that X = i with probability

pi 2 (0; 1] for each i 2 X . (
P

i pi = 1.) Probability zero items may be omitted as

they never �gure in any properties regarding the distribution.

De�nition 1 �0
n refers to the set of all probability distributions over n items, each

of which has strictly positive probability [7]. We may omit the subscript when n is

understood.

Expected values involving functions of X are denoted Ep[f(X)] so as to emphasize

the underlying probability mass function (or probability vector) p = (p1; p2; : : : ; pn).

Without loss of generality, we assume pi � pj if i > j. Also, to arrive at a practical

algorithm, all pi's must be assumed to be representable, and thus of �nite complexity.

Each item may be assigned a corresponding codeword that we denote as ci 2

CX � f0; 1g�, where CX , the code, is the collection of codewords chosen. The only

fundamental constraint is that the code be pre�x-free. That is, to eliminate ambiguity

and force codewords to be self-terminating, no codeword may be the pre�x of another

codeword.

Each codeword ci is of length li, subject to the constraints of the problem. For

the sake of notation, we may instead refer to l(i) = li, viewing it as the ith entry

of vector l. A code is feasible if and only if its codeword lengths satisfy the Kraft

inequality,
P

i 2
�li � 1, as per McMillan's theorem; this applies not just to pre�x-

free codes but to any uniquely decodable code [21]. Thus all feasible solutions have

a pre�x-free equivalent. To emphasize connection with the codewords and to avoid

confusion with the number 1 or an integer length l, we refer to such a set of feasible

codeword lengths as LX instead of l.

De�nition 2 Binary pre�x-free codes can be represented by an encoding binary tree

(or code tree), where each path from the root to a leaf represents a distinct code, the

1.3. FORMALIZATION 5

100 101 111110

0

Figure 1.1: A �ve-codeword pre�x-free code CX represented by a binary tree

kth digit of which is 0 if the kth edge on the path is the left one and 1 if it is the right

one. A full encoding tree is one that has no nodes with only one child; if a code did

not have a full tree a more eÆcient one could be found by deleting the last bit from a

codeword with no sibling. A full tree contains a smaller binary tree | represented in

Figure 1.1 by circular nodes or internal nodes | and can be viewed as this tree with

added leaf nodes, the squares or external nodes. In Figure 1.1 we place the resulting

codewords in the external node squares to illustrate the relationship between the code

and the tree. Such external nodes extend the smaller tree to be full, and such a tree

is often called an extended binary tree.

A tree satisfying the Kraft inequality with equality must be full, and a full �nite

tree satis�es the Kraft inequality with equality. An in�nite full tree failing equality

is given in [64]; we analyze this tree in Section 5.3.1.

De�nition 3 A collection of lengths, LX , is called a length ensemble. (In other

papers such collections are referred to as level sets [27], a term we avoid due to its

di�erent meaning in continuous mathematics, and leaf patterns [60], a term we avoid

because of its evoking a tree structure, which we do not always desire.)

We will later show that �nding either CX or LX solves a coding problem, as a

valid code can easily be found from the length ensemble and vice versa. For �nite

alphabets, when lengths are enumerated in decreasing order and di�erent ensembles

6 CHAPTER 1. INTRODUCTION

for the same n are sorted lexicographically, such sets are well-ordered. (Recall that

when we actually refer to lengths by their indices, we sort lengths in increasing order.

The ordering of items we use will be made clear from the context.)

Sorted lexicographically, there exists among every set of length ensembles a unique

minimum length ensemble. For the set of all length ensembles satisfying the Kraft

inequality, this corresponds to the code with 2dlg ne � n = 2dlg ne � 2lg n codewords

of length blgnc and 2n � 2dlg ne of length dlgne. The other extreme is the maxi-

mum length ensemble among ensembles satisfying the Kraft inequality with equality,

f1; 2; : : : ; n� 1; n� 1g. This leads to the following de�nitions:

De�nition 4 A minimum length ensemble (minimal code) is the smallest length

ensemble (associated code) among a set when ordered lexicographically. A at length

ensemble (at code) is the smallest length ensemble (code) among all valid ensembles

(codes) for an alphabet. A unary length ensemble (unary code) is the maximum length

ensemble among ensembles (codes) satisfying the Kraft inequality with equality, that

is, f1; 2 : : : ; n� 1; n� 1g.

These distinctions become useful when an optimal code is not unique, or when we

wish to characterize the solutions for a family of problems.

With the Kraft inequality and perhaps other constraints, Hu�man coding [43]

�nds the codebook CX = fcig that minimizes the expected length, Ep[l(X)] =
P

i pili.

The central goal of coding theory is this minimization, due to the strong law of large

numbers. This law states that the mean length of a sequence of independent and

identically distributed occurrences approaches the expected length with probability 1.

This property also holds for many sequences that are not identically distributed [25].

Thus, with large amounts of data, if minimization of average length is the goal, one

need only worry about expected length, and the penalty is linear.

As noted above, however, we do not always have large amounts of data and average

length is not always our goal. The broadest generalization of the problem considered

in this dissertation may be stated as the following minimization over length ensembles:

1.3. FORMALIZATION 7

Given p 2 �0
n

F : Nn � [0; 1]n ! R [f+1g

Minimize fLX g F (LX ;p)

subject to
P

i 2
�li � 1

li 2 N :

(1.2)

Note that if the penalty has a range including +1, this indicates constraints to the

coding problem within the penalty function, as in [12].

For all the cases considered here, we assume that, if LX � L0X | that is, li � l0i 8 i

| then F (LX ;p) � F (L0X ;p). All reasonable penalties have this form, and therefore

all problems of this form have solutions that satisfy the Kraft inequality with equality.

(Note that this does not mean that all minimizing solutions satisfy equality, but that

at least one does.)

Although this formulation is too general to be solved as de�nitively as the linear

version, several special cases have been previously solved or otherwise explored. We

aim to extend the space of eÆciently soluble cases to other problems of special interest,

as well as exploring the structure and properties of previously examined cases.

The penalty functions shown in Table 1.1 illustrate the wide range of penalty

functions possible. Equation F1 is the expectation function we are all familiar with,

but several others in this table arise in other cases we will explore.

Note that we have assumed we are coding only one piece of information with a

known probability mass function, not multiple pieces of information with di�erent

probabilities. However, if we assume we have a complete probability model for which

events may not be independent or identically distributed, then we may easily extend

our results to these cases by considering probability mass function p to take all past

events into account. In contrast, if our model is incomplete, nonadaptive universal

techniques [21] might apply, but we do not explore these here.

It is noteworthy, too, that adaptive and universal coding techniques are often not

the wisest to use in practical instances of coding. In many cases, their small gains

over Hu�man coding are not worth the trade-o� in complexity [11, 93]. For all the

aforementioned reasons, here we consider only the problem as given in equation (1.2).

8 CHAPTER 1. INTRODUCTION

F1(LX ;p) =
Pn

i=1 pili (Hu�man case)

F2(LX ;p) =
P

i pia
li for some a > 1

F3(LX ;p) = �
P

i pia
li for some 0 < a < 1

F4(LX ;p) = 1
b
lg
P

i pi2
bli for some b 6= 0

F5(LX ;p) = 1
d
lg
P

i

p
1+b+d
1+b

i

P
j p

1

1+b
j

!
2dli for some b > �1; d 6= 0

F6(LX ;p) = maxi(li + lg pi)

F7(LX ;p) =
Q

i p
�li
i = 2

�P
i li�lg 1

pi

�

F8(LX ;p) =
P

i p
�li
i

F9(LX ;p) =
P

i pi(l
2
i + li) for some � 0

F10(LX ;p) =
P

i pil
�
i for some � � 1

F11(LX ;p) =
P

i(1� pi)
�li

F12(LX ;p) =
P

i l
(1+pi)
i

F13(LX ;p) =

� P
i pili if maxi li � lmax

+1 otherwise
for some lmax � dlgne

F14(LX ;p) =

(
�
P

i pil
2

i

2(1��Pi pili)
+
P

i pili;
P

i pili <
1
�

+1;
P

i pili �
1
�

for some � > 0

F15(LX ;p) = as
�

, where s� is the largest s such that for some a > 1; moment

gT (�s) �
P

i pie
�sli generating function gT

F16(LX ;p) =
Q

i l
pi
i = 2

P
i pi lg li

Table 1.1: Examples of penalty functions

1.4. PRIOR WORK 9

1.4 Prior work

The literature on aspects of and variants of the Hu�man problem is surprisingly

vast. For a thorough review, we would refer the reader to surveys on the topic by

Abrahams [2, 3]. Here we discuss prior work on alternative penalty functions, on

secondary tie-breaking penalty functions, and on in�nite alphabets. We ignore cases

with further constraints, such as alphabetic codes [42], `1'-ended codes [10, 17], and

�x-free codes [98].

The earliest variants of Hu�man coding are two deterministic versions of the

algorithm, the so-called bottom-merge and top-merge versions. Because codes with

di�erent length ensembles may have the same expected length, these linear time

algorithms break ties by optimizing any of a number of secondary criteria among

codes with minimal average length [27, 38, 53, 55, 68, 84].

The �rst alternative (primary) penalties were alluded to by R�enyi [80] and pro-

posed by Campbell [7, 14, 15]. In this dissertation, we often refer to the Campbell

penalties. Campbell's most general formulation was a penalty of the form F (LX ;p) =

f�1f
P

i pif(li)g for some continuous strictly monotonic function f : R+ ! R
+ . He

explored the properties of convex and concave f , and related exponential f | that

for which F (LX ;p) = loga
P

i pia
li for positive a 6= 1 | to R�enyi entropy [81]. A

(linear time) Hu�man-like algorithm for this penalty was found independently by Hu,

Kleitman, and Tamaki [39] for a > 1 in the context of search trees, and by Hum-

blet [45] for all a 6= 1 to minimize the probability of bu�er overow in a GI=G=1

queue (using an asymptotic approximation given by Wyner in [96]). In the latter

case, the extension was applied to a more complex penalty, shown as F15 in Table 1.1.

In practice, Humblet found that the overall algorithm was eÆcient, though no time

complexity bounds were given. Hu�man-like coding techniques were also explored in

several follow-up papers [18, 53, 78], the �rst of which also solved a previously pro-

posed problem, the axiomatically derived coding penalty of Nath [76], which, as with

Campbell's exponential penalties, calls for the optimization of any one of a singly

parameterized set of functions.

Using the linear penalty but limiting maximum length to an integer lmax � dlgne

10 CHAPTER 1. INTRODUCTION

has been thoroughly examined, and may be stated as in F13 in Table 1.1. Many papers

explore algorithms to �nd the solution to this problem [31,41,57,92] or approximations

[48,72,75]; [72] provides a more comprehensive list of references for this problem. The

�rst eÆcient solution was given by Larmore and Hirschberg in [59]. This algorithm

has O(nlmax) time and O(n) space. Constant-factor and special-case improvements

have been made since [48,63,74,88,89]. In addition, an asymptotic improvement has

been made made by Schieber in [83], a re�nement of a previous paper [9] using a

di�erent reduction [60]. This O(n2O(
p
log lmax log log n)) time algorithm has not been put

into wide use, however, and no linear time algorithms have been proposed [72].

The approach of Garey in [31] was modi�ed to optimize another practical non-

linear penalty, given as equation F14, that of minimizing delay through an M=G=1

queue [58]. The time complexity of this is O(n5) [space O(n3)], consisting of O(n2)

optimizations of the form F (LX ;p) =
P

i pi(l
2
i + li) for � 0 (equation F9), each

with time and space complexity O(n3); we �nd we can reduce this complexity.

In [20], as with [39], Hu�man trees are viewed as search trees, in this case the

goal being to minimize expected maximum search length among multiple concur-

rently traversed trees. A linear time approximation algorithm is given. Drmota and

Szpankowski considered the problem of minimizing maximal pointwise redundancy,

F (LX ;p) = maxi(li+lg pi), in [24], o�ering a �(n logn) solution generalizing Shannon

coding [85].

Note that those problems for which polynomial time solutions have been o�ered

are speci�c problems or problems parameterized by one real variable. (Humblet's

bu�er overow problem, although eÆcient in practice, has not been shown to be

polynomial time in the worst case, and it ultimately reduces to the singly parameter-

ized exponential case.) We consider and solve some more general classes here.

Hu�man coding for in�nite alphabets has been primarily examined for cases in

which probabilities of items decline precisely geometrically, and thus can be optimally

encoded by the composition of a �nite code and a unary code [1, 19, 28, 35, 36, 71].

The only other method of producing such codes works only for cases in which the

rate of fall-o� of the probabilities is rapidly exponential or superexponential [44, 49].

Linder, Tarokh, and Zeger proved in [64] that optimal codes always exist, but this

1.5. ORGANIZATION 11

nential

Campbell’s

convex

case
concave

Campbell’s

case

Minimum maximum

 (non−exponential)
Expo−

 Huffman

Minimum
 Delay

Expo−
nential

quasilinear convex case
General

DABR

 pointwise redundancy

(b < 0) (b > 0)

Figure 1.2: Penalty classes we consider in this dissertation

is nonconstructive. No previously published work has explored alternate penalties in

the in�nite case.

1.5 Organization

Figure 1.2 illustrates many penalty classes we consider in this dissertation, with ones

that we both solve and examine in signi�cant depth in bold. Properties of the other

penalties shown are also explored, as is the in�nite alphabet case.

In Chapter 2 we discuss a nonlinear penalty that is an extension of standard coding

| the exponential penalty | one which introduces a parametric degree of freedom.

Its algorithmic solution and properties are discussed. In Chapter 3 we extend this

penalty to consider a measurement of deviation of actual codeword length from ideal;

this adds a second degree of freedom, framing previously known problems in a larger

context, that of d-average b-redundancy (or DABR). In Chapter 4 we consider a

further generalization that solves an entire family of problems, the quasilinear con-

vex family. Finally, in Chapter 5 we extend the aforementioned results to in�nite

alphabets representing a countable number of outcomes.

Chapter 2

Exponential penalties

In this chapter, we introduce exponential penalties and investigate their algorithmic

solutions, properties, and applications.

2.1 Nonlinear penalties

With a nonlinear penalty, one for which minimization of expected length is not the

goal, the solution for a coding problem may di�er from that of the linear case. In

certain instances, choosing the penalty may be more a matter of art than science,

although many nonlinear problem formulations have precise speci�cations. The linear

penalty, that of expectation, is the one that yields the results concerning most of

coding theory. We might expect this to be one end of a spectrum of possibilities,

away from which we are penalized more and more extremely for long codewords. As

before, penalty should be a function of lengths of the codewords, but not necessarily

a linear one.

We previously stated that �nding either CX or LX solves the problem. Obviously,

LX may be obtained from CX . Given LX | the collection of lengths li 2 N |

satisfying the Kraft inequality (the only explicit constraint here), we can construct

codewords for these lengths by building a tree in top-down fashion to match lengths

enumerated in decreasing order. We briey describe how.

Consider a well-known unpublished coding technique of Elias [33]. View each

12

2.1. NONLINEAR PENALTIES 13

����������
����������
����������

����������
����������
����������

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

100 110 111

10

0

Figure 2.1: Representations of a pre�x-free code as a tree and as subintervals of [0; 1)

codeword ci of length li as occupying a portion of the [0; 1) interval beginning at

its binary fractional expansion and occupying a subinterval of length 2�li, as in Fig-

ure 2.1. Thus, for example, the codeword 101 would occupy [0:625; 0:75). It is clear

that these intervals are disjoint for codewords of a pre�x-free code and that their

summed length is the Kraft inequality sum. With li sorted in increasing order, then,

we may let each length de�ne its corresponding codeword by occupying the next

portion of the unit interval in this order. This works even if X is in�nite.

Thus we only need to �nd the values of li that optimize the criteria to �nd an

optimal code. The goal should be to minimize a function of LX and p. The most

general case, as in equation (1.2), is to consider an arbitrary F (LX ;p). Slightly more

speci�c is the set of functions of the form F (LX ;p) =
P

i f(li; pi) for some function

f : N � [0; 1]! R [f+1g.

Within this formulation, we always assume f is a monotonically increasing func-

tion of li. In addition, we usually assume it to be convex, so that there is a penalty for

each additional bit and the penalty for each additional bit is at least as large as that

14 CHAPTER 2. EXPONENTIAL PENALTIES

of the previous bit. (Convexity refers to increasing derivatives or di�erences, so that,

for x 2 N , g : N ! R[f+1g is convex if and only if, 8 x 2 N ; g(x+1) � g(x+2)+g(x)

2
.)

The convexity assumption is sensible for many examples in which the bits sent

are critical. Additional bits are penalized more heavily in all previously explored

applications, although we will propose a case where this is not so.

Given such an f and a p, the problem is:

Minimize fLX g
P

i f(li; pi)

subject to
P

i 2
�li � 1 (Kraft inequality)

li 2 N (integer constraint)

(2.1)

We call penalties of this form generalized quasilinear penalties.

A class proposed by Campbell in [15] (and previously hinted at by R�enyi in

[80]) covers most interesting penalties of this form. He considered F 's of the form

F (LX ;p) =
P

i pif(li), or Ep[f(l(X))]. We may also write this as F (CX ;p), given

code CX . The Campbell class is a quasilinear mean value formulation [8]. (The

mean is also known as a weighted quasiarithmetic mean [7], a Kolmogorov-Nagumo

mean [80], or a de Finetti-Kitagawa mean [4]). The problem may be stated as follows:

Given p 2 �0

strictly monotonically increasing f(x)

Minimize fLX g Ep[f(l(X))]

subject to
P

i 2
�li � 1

li 2 N

(2.2)

The proper quasilinear formulation is

Given p 2 �0

strictly monotonic ~f 2 C0 : R+ ! R
+

Minimize fLX g ~f�1fEp[~f(l(X))]g

subject to
P

i 2
�li � 1

li 2 N

(2.3)

which is more useful for analysis | as we will see in Sections 4.2 and 5.3.1 | although

2.2. AN EXPONENTIAL PENALTY 15

it does not cover cases where any values are +1. It does, however, allow ~f to

be monotonically decreasing. Note that, because f�1fEp[~f(l(X))]g � 1, we need

consider only the domain [1;+1], so, if ~f is monotonically decreasing, we may use

the form of (2.2) with f(x) = f(1) � ~f(x). Thus, our initial assumption that f is

monotonically increasing holds without loss of generality. For continuous monotonic

f : R+ ! R
+ , statements (2.2) and (2.3) may be used interchangeably, as the case

warrants.

Throughout this dissertation we assume there is no constraint on the codeword

values not implicit in the penalty function. Note that any increasing transformation of

F (LX ;p) leaves the solution unchanged, as the minimizing argument for the objective

function F (LX ;p) = Ep[f(l(X))] remains the same. Thus, in the linear case, although

the function is f(x) = x, any f(x) = �x + � (� > 0; � 2 R) would also do. For

each additional bit used, we exact a constant penalty. This, for �nite cases, has the

well-known constructive form due to Hu�man [43]. Note that, if 2�LX denotes the

probability vector for which the ith probability is 2�li, the linear problem is equivalent

to argminLX D(p k 2
�LX) [65].

2.2 An exponential penalty

2.2.1 Motivation

Since only the linear case has a constant derivative, in all other cases penalty per

bit must be a function of length. One possible penalty is f(x) = 2bx = ax for some

parameter b = lg a 2 (0;+1). For now we only consider values in the this range

because b 2 (�1; 0] would cause f(x) to be nonincreasing and thus the problem

to be ill-posed if put in form (2.2). We choose the parametric variable to be either

a or b as appropriate to context. We may thus refer to the objective function as

Fa(LX ;p) = Ep[a
l(X)] or Fb(LX ;p) = Ep[2

bl(X)]. We also �nd it useful at times to

map the parameter to the unit interval, assigning

� ,
1

1 + b
=

1

1 + lg a
2 (0; 1): (2.4)

16 CHAPTER 2. EXPONENTIAL PENALTIES

We may also drop the parameter subscript for F (LX ;p) if the implicit values are clear

from context.

Instead of a constant additional penalty, the penalty is now a geometric one. For

example, one additional bit would exact a 10% penalty over the shorter code for the

case of a = 1:1. If we want to place a high penalty on additional bits, we choose a

large parameter, whereas if we want to place a penalty that increases only slightly

per bit with additional bits, we choose a small parameter.

Let us de�ne

Gb(LX ;p) ,
1

b
lgEp[2

bl(X)] (2.5)

so that we may put this problem in the quasilinear form given in equation (2.3), that

is, as argminLX G(LX ;p). The formulation using G is often called a �-exponential

average or �-average for b = � [7]. Note that we may expand the domain to [0;+1]

by instead de�ning

Gb(LX ;p) , lim
�!b

1

�
lgEp[2

�l(X)]: (2.6)

Then

G0(LX ;p) = lim�!0

�
Ep(l(X)) + �

2
�2
p
(l(X)) +O(�2)

�
= Ep(l(X))

G+1(LX ;p) = lim�"+1
h
maxi li +

1
�
lgPmax +O(1

�2�
)
i

= maxi li
(2.7)

where Pmax = PXfl(X) = maxj ljg, �
2
p
(X) = Epf[X�Ep(X)]2g, andO(u(�)) denotes

a v(�) such that lim�!b
jv(�)j
ju(�)j exists and is �nite. (Constant b, usually +1 though

often �1 or 0, is always implied by the context. For example, it is +1 when

discussing algorithm complexity. Also, �(u(�)) may be used instead if the limit is

additionally nonzero.)

In other words, as b " +1 (a " +1), minimizing objective function F+1(LX ;p)

becomes minimizing the maximum length, and, given all possible codes minimizing

maximum length, this chooses the one that minimizes the probability that this max-

imum length is achieved. This corresponds to coding using the at length ensemble.

Similarly, as b # 0 (a # 1), argminLX Ep[2
bl(X)] ! argminLX Ep[l(X)], the Hu�man

2.2. AN EXPONENTIAL PENALTY 17

case, and, given multiple possible Hu�man lengths, this chooses the one with the

minimum variance, �2
p
; we return to this later. Thus we have de�ned a problem with

a parameter that varies solution values between these two extreme cases, trading o�

between minimum average length and minimum maximum (minimax) length.

Penalties Fb(LX ;p) and Gb(LX ;p) are nondecreasing in b (and thus a). The

nondecreasing property of G may be seen by noting that, for all v = fv(i)g, the

moment about zeroMv
p
(d) = fEp[v(X)]dg1=d is nondecreasing in d. SinceGb(LX ;p) =

lgM2LX
p

(b), this is nondecreasing in b. This implies the same for F .

In addition to the above properties and the simplicity of the exponential penalty,

we �nd that, compared to other reasonable alternatives, such as f(x) = xa, the

penalty f(x) = ax guards against unusually long codewords to a far greater degree.

Another reasonable alternative, limiting the maximum length and optimizing for ex-

pected length within this constraint, was considered in [59], which found an eÆcient

algorithm for this problem. We return to such a case later, but for now we dismiss it

for not having the smoothness of trade-o� we desire.

The exponential is the traditional penalty of risk sensitivity (risk aversion) [94] and

satis�es a number of mathematical properties in this context [7], such as additivity and

translativity, to be discussed. In addition, this penalty may be used in minimizing

probability of bu�er overow for variable length code transmission [45]. Further

justi�cation for this penalty has been given by Acz�el and Dhombres in [8]. Thus, we

�rst consider f(x) = ax, and only later consider other penalties.

2.2.2 Real-valued problem solution and bounds

The exponential penalty was introduced by Campbell [14, 15] and algorithmically

solved in [39,45]. Here we present a more detailed examination to the problem, based

on the approach towards the linear penalty given by Cover and Thomas in [21]. We

also look at properties of and extensions to the exponential problem.

To get an idea as to the form for the minimization over LX , we should �rst consider

the problem where we do not restrict the values of li to integers; call this the optimal

ideal length sequence, LyX = flyig. In this case, the problem is one of constrained

18 CHAPTER 2. EXPONENTIAL PENALTIES

minimization, which we may rewrite using Lagrange multipliers as the minimization

of:

J ,
X
i

pia
li + �

 X
i

2�li

!
=
X
i

pi2
bli + �

 X
i

2�li

!
: (2.8)

Di�erentiating with respect to li, we obtain

@J

@li
= bpi2

bli ln 2� �2�li ln 2: (2.9)

If we set the derivative to 0 and solve for li, we �nd

2�l
y
i =

�
bpi

�

� 1

1+b

(2.10)

or

lyi = lg

"�
bpi

�

�� 1

1+b

#
=
� lg bpi

�

1 + b
= �

1

1 + b
lg bpi +

1

1 + b
lg� (2.11)

where � is the solution of

X
j

�
bpj

�

� 1

1+b

= ��
1

1+b b
1

1+b

X
j

pj
1

1+b = 1 (2.12)

which is

� = b �

 X
j

pj
1

1+b

!1+b

(2.13)

yielding

lyi = �
1

1 + b
lg bpi+

1

1 + b
lg

2
4b �

 X
j

pj
1

1+b

!1+b
3
5 = �

1

1 + b
lg pi+lg

X
j

pj
1

1+b (2.14)

or

2�l
y
i =

p
1

1+b

iP
j pj

1

1+b

=
p

1

1+lg a

iP
j pj

1

1+lg a

: (2.15)

2.2. AN EXPONENTIAL PENALTY 19

The value for the objective function at this extremum is

F (LyX ;p) = Ep[2
bly(X)] = Ep

2
4

p(X)
1

1+bP
j p(j)

1

1+b

!�b35 =

 X
j

pj
1

1+b

!1+b

= 2bH�(p)

(2.16)

or

G(LyX ;p) =
1

b
lgF (LyX ;p) = H�(p) (2.17)

where we recall � = 1
1+b

= 1
1+lg a

and

H�(p) ,
1

1� �
lg
X
i

p�i ; (2.18)

the R�enyi entropy of order � for this distribution. This should not be surprising given

the relationship between Hu�man coding and Shannon entropy, which corresponds

to b! 0 and H1(p) [85].

This problem is a convex optimization problem, and one can easily con�rm that

it satis�es the Karush-Kuhn-Tucker optimality conditions. Thus this local extremum

is the global minimum [12].

Thus, 2�l
y
i for each codeword should be proportional to a power of the correspond-

ing pi, this power being a function of the constraint parameter. Note that because

probabilities sum to 1, we can invert equation (2.14) to obtain the probability mass

function ideally corresponding to a given LX :

pi =
2�(1+b)liP
j 2

�(1+b)lj =

"X
j

(2a)(li�lj)
#�1

(2.19)

2.2.3 Integer-valued problem solution and algorithm

Due to the integer constraint, the optimal codeword lengths L�X may not be the ideal

LyX . A suboptimal solution is lSi = dlyi e, which satis�es the Kraft inequality, and may

be speci�ed for both �nite and in�nite alphabets. This is similar to Shannon coding

20 CHAPTER 2. EXPONENTIAL PENALTIES

and we thus call it a Shannon-like code. For the linear penalty, Shannon coding is

lSi = d� lg pie, which is optimal i� the problem is dyadic, that is, all pi 2 2Z, the set of

powers of two. Similarly, for this more general case, an optimal solution is obtained

| and equality thus achieved | i� all ly's speci�ed by (2.14) are integers.

Thus we have

G(LyX ;p) � G(L�X ;p) � G(LSX ;p) < 1 +H�(p): (2.20)

since G(LSX ;p) =
1
b
lgEp[2

bdly(X)e] and 1 +H�(p) =
1
b
lgEp[2

b[1+ly(X)]]. This leads to

H�(p) � G(L�X ;p) < H�(p) + 1 (2.21)

aH�(p) � F (L�X ;p) < aH�(p)+1: (2.22)

These inequalities provide the coding-motivated de�nition of R�enyi entropy given

by Campbell in [15]. Note that, because ideal optimal lengths depend on all proba-

bilities, it would be diÆcult to improve on this bound to obtain a bound by knowing

only one or two item probabilities, in the manner of [29, 98], among others.

To solve the problem of �nding the optimal code for �nite alphabets, we need to

�nd a method for formulating a constructive code similar to that devised by Hu�man.

We are not guaranteed that an eÆcient algorithm exists given a convex optimization

problem restricted to the integers. Finding the optimal solution of a convex opti-

mization problem with integer constraints is a problem with NP-hard special cases,

such as the nearest lattice vector problem [37,90], integer programming [32], and the

knapsack problem [32,66]. In addition, for coding, the size of the solution space grows

exponentially with the number of items to be considered [73, 77]. However, we can

take advantage of the special structure of this problem in order to �nd an eÆcient

solution.

Various approaches have been used to understand the solution to this problem

[18,53,55,78,87], �rst presented in [39,45]. We present a fresh approach and look at

the consequences of the solution.

The following lemma details some of the structure of the problem. For reasons

that will later become clear, we waive the requirement that probabilities sum to 1.

2.2. AN EXPONENTIAL PENALTY 21

Freed from this restraint, we can address a slightly wider class of problems, scaling

the elements to sum to 1 if desired.

De�nition 5 A probability vector that need not have total measure 1, but which still

has all elements nonnegative, is referred to as a vector of weights or weight vector

and is denoted by w instead of p.

Lemma 1 For every monotonically increasing penalty, F (LX ;w) =
P

iwif(li), there

exists an optimal code such that:

1. If wj � wk, then lj � lk.

2. The two longest codewords have the same length.

3. The two longest codewords di�er only in the last bit and correspond to the two

symbols with the lowest weight.

The proof is a modi�ed version of that presented for the linear case in [21] as

Lemma 5.8.1, which considers codes as binary tree structures.

Proof: Consider an optimal code CX :

1. If wj � wk, then lj � lk. Given wj > wk, consider C
0
X with the codewords j

and k of CX interchanged. Then

F (C 0
X ;w)� F (CX ;w) =

X
i

wif(l
0
i)�

X
i

wif(li) (2.23)

= wjf(lk) + wkf(lj)� wjf(lj)� wkf(lk) (2.24)

= (wj � wk)(f(lk)� f(lj)): (2.25)

But wj � wk > 0, and since CX is optimal, F (C 0
X ;w) � F (CX ;w) � 0, so

f(lk) � f(lj) and thus lk � lj. Thus CX itself satis�es wj > wk) lj � lk.

Furthermore, without loss of generality, we may reorder any identical values of

li such that, for wj � wk, lj � lk (and thus, for all i > j, li � lj).

22 CHAPTER 2. EXPONENTIAL PENALTIES

2. The two longest codewords are of the same length. If the two longest codewords

are not of the same length, then we can delete the last bit of the longer one,

preserving the pre�x property of pre�x-free codes and achieving a strictly lower

value for F (LX ;w).

3. The two longest codewords di�er only in the last bit and correspond to the two

symbols with the lowest weight. As shown in the proof of property 1, the longest

codewords must belong to the source symbols of least weight. If there is a

maximal length codeword without a sibling, then we can delete the last bit

of the codeword length and still satisfy the pre�x property, as in the proof of

property 2. This would reduce F (LX ;w) and contradicts optimality of the code.

Thus every maximal length codeword in any optimal code has a sibling.

Now we can exchange the longest length codewords so the two lowest probability

source symbols are associated with two siblings on the tree. This preserves LX

and thus F (LX ;w). Thus the codewords for the two lowest probability source

symbols have maximal length and agree in all but the last bit.

With Lemma 1, we can, as in [21], restrict the search to codes satisfying these

properties. Note that we have eliminated some possibly optimal codes CX (and thus

their equivalent trees) from consideration. However, these codes are, in some sense,

equivalent to ones we do consider; we only switch subtrees (pre�xes) of equal depth

(properties 1 and 3), so, ignoring order, all optimal LX are still under consideration.

We know an optimal order for a given set of lengths is nondecreasing. We thus

have restricted ourselves to the set of sequences of jX j lengths in this order satisfy-

ing the Kraft inequality with equality. Call this set LjX j, the set of compact codes.

Although this set grows quickly with the size of X [73,77], we may construct an itera-

tive algorithm from the restrictions of Lemma 1. We term this algorithm exponential

Hu�man coding, which we illustrate by comparison to Hu�man coding, algorithmi-

cally below and by example in Figures 2.2 and 2.3. (Because this is a generalization

of Hu�man coding, we may call omit the quali�er \exponential" if it is clear from

context.)

2.2. AN EXPONENTIAL PENALTY 23

Codeword
length Codeword Item Probability

0.36

0.30

0.20

0.14

0.36

0.34

0.30

0.74

0.36

1.0011

2

3

3

01

000

001

m1

m2

m3

m4

Figure 2.2: Hu�man coding, p = (0:36; 0:30; 0:20; 0:14)

Hu�man coding, we recall, has the following constructive algorithm for minimizing

expected length:

Procedure for Hu�man Coding

1. Each item mi 2 fm1; m2; : : : ; mng has weight wi 2 WX , where WX is the set of

all such weights. (Initially, mi = i.) Assume each item mi has codeword ci, to

be determined later.

2. Combine the items with the two smallest weights wj and wk into one item ~mj

with the combined weight ~wj = wj + wk. This item has codeword ~cj, to be

determined later, while mj is assigned code cj = ~cj0 and mk code ck = ~cj1.

Since these have been assigned in terms of ~cj, replace wj and wk with ~wj in W

to form W ~X .
P

W w =
P

i2 ~X ~wi remains constant.

3. Repeat procedure, now with the remaining n� 1 codewords and corresponding

weights in W, until only one item is left. The weight of this item is
P

i2X wi.

All codewords are now de�ned by assigning the null string to this trivial item.

An example of Hu�man coding is shown in Figure 2.2. Exponential Hu�man

coding is similar, with minor alterations:

24 CHAPTER 2. EXPONENTIAL PENALTIES

Codeword
length Codeword Item

0.36

0.30

0.20

0.14

0.374

0.36

0.30

0.726

0.374

1.21

Weight

2

2

2

2 00

01

10

11

m1

m2

m3

m4

Figure 2.3: Exponential Hu�man coding, p = (0:36; 0:30; 0:20; 0:14) and a = 1:1

Procedure for Exponential Hu�man Coding (Parameter a = 2b)

1. Each item mi 2 fm1; m2; : : : ; mng has weight wi 2 WX , where WX is the set of

all such weights. (Initially, mi = i.) Assume each item mi has codeword ci, to

be determined later.

2. Combine the items with the two smallest weights wj and wk into one item ~mj

with the combined weight ~wj = �(wj; wk) = a � (wj + wk) (for � de�ned in

this manner). This item has codeword ~cj, to be determined later, while mj is

assigned code cj = ~cj0 and mk code ck = ~cj1. Since these have been assigned

in terms of ~cj, replace wj and wk with ~wj in W to formW ~X .
P

W w =
P

i2 ~X ~wi

need not remain constant.

3. Repeat procedure, now with the remaining n� 1 codewords and corresponding

weights in W, until only one item is left. The weight of this item is
P

i2X wia
li .

All codewords are now de�ned by assigning the null string to this trivial item.

We later show that this algorithm may be modi�ed to run in linear time (to input

size) given sorted weights in the same manner as Hu�man coding [91]. An example

of exponential Hu�man coding for a = 1:1 is shown in Figure 2.3. The resulting

code is di�erent from that in Figure 2.2 due to the di�erent penalty. Also note that

F (LX ;p) = Ep[1:1
l(X)] = Ep[1:1

2] = Ep[1:21] = 1:21, the value minimized, is the

value calculated for the �nal combined weight. In the case of a = 1, the value is 1

and the method is Hu�man coding, as we might expect from (2.7).

2.2. AN EXPONENTIAL PENALTY 25

Note that possible ties in weight mean that this algorithm, as with Hu�man

coding, is nondeterministic. Not only may a tie render an optimal solution nonunique

in terms of the lengths of its codewords, but, since di�erent codes may correspond to

the same length ensembles, the codes themselves may be of many di�erent equivalent

forms. As mentioned previously and illustrated later, some optimal codes cannot be

derived from (exponential) Hu�man coding.

Before we concern ourselves with this, however, we should �rst prove that the

algorithm's result is optimal. A proof of optimality follows for a > 1, a proof which

follows the format of the proof of Hu�man coding optimality in [21], but has a slightly

di�erent approach.

Theorem 1 The exponential Hu�man algorithm is optimal, i.e., if C� is an expo-

nential Hu�man code for weights (probabilities) w and parameter a > 1, and, if C is

any other uniquely decodable code, then Fa(C
�;w) � Fa(C;w).

Proof: Assume CX satis�es the properties of Lemma 1. De�ne a \merged" code

for n � 1 symbols as follows: Take the common pre�x of the two longest codewords

(corresponding to the two least values of wi) and allot it to a symbol with weight

~wn�1 = a(wn�1 + wn). All other codewords remain the same. Consider this new

alphabet ~X with weight vector ~w. The correspondence is shown below:

W ~X C ~X L ~X CX LX

w1 ~c1 ~l1 c1 = ~c1 l1 = ~l1

w2 ~c2 ~l2 c2 = ~c2 l2 = ~l2
...

...
...

...
...

wn�2 ~cn�2 ~ln�2 cn�2 = ~cn�2 ln�2 = ~ln�2

~wn�1 = (wn�1 + wn)a ~cn�1 ~ln�1 cn�1 = ~cn�10 ln�1 = ~ln�1 + 1

cn = ~cn�11 ln = ~ln�1 + 1

where ci denotes a binary codeword and li its length. The expected penalty of the

code CX with weights WX is

26 CHAPTER 2. EXPONENTIAL PENALTIES

F (CX ;w) =

nX
i=1

wia
li (2.26)

=

n�2X
i=1

~wia
~li + wn�1a

~ln�1+1 + wna
~ln�1+1 (2.27)

=

n�2X
i=1

~wia
~li + (wn�1 + wn)a � a

~ln�1 (2.28)

=

n�1X
i=1

~wia
~li (2.29)

= F (C ~X ; ~w): (2.30)

Thus, given the conclusions of Lemma 1, we have reduced minimizing F (CX ;w)

to minimizing F (C ~X ; ~w). We can invoke Lemma 1 on this modi�ed code, repeating as

needed to inductively �nd an optimal solution. Since we have maintained optimality

at every stage in the reduction, the code constructed for n symbols is optimal.

2.3 Properties of the exponential penalty

2.3.1 Sibling property

As one might expect, certain properties are preserved with nonlinear penalties while

others must be modi�ed or discarded. An example of one that must be modi�ed is

weighting on internal nodes. As with Hu�man coding, because weights are combined

in building the exponential Hu�man code tree, each internal node in the encoding

tree may be said to have a weight equal to its weight at the step of the algorithm in

which it is considered a single item. However, weights are not merely summed. For

example, the root has weight F (CX ;w) =
P

iwia
li. Any extended binary tree that

is a proper subtree of the encoding tree corresponds to an exponential Hu�man tree

on the leaf weights, although the sum of these weights need not be 1. (Note that

the penalties in this dissertation depend on only the depth of the leaf nodes, not on

weight of internal nodes, as in [34, 78].)

2.3. PROPERTIES OF THE EXPONENTIAL PENALTY 27

X1

X2

X3X3

X3

X3

X4

X5X5

X5

Figure 2.4: Tree representation of a partition of the alphabet X

De�nition 6 A partition of X into subsets is said to be compatible with the code

CX if there exists a subtree of the (main) code tree in which each leaf node has the

following property: The corresponding node in the original code tree is an ancestor

of all nodes (and only those nodes) representing items in a partition subset of the

original tree.

In Figure 2.4 we illustrate a compatible partition to the code of Figure 2.5(a).

This partition consists of �ve disjoint subsets, X1, X2, X3, X4, and X5. Note that the

subtree is the same as the tree from Figure 1.1.

A partition is a way of thinking about a code tree in terms of the weighted subtrees

with roots at the leaf nodes of the main subtree. Each subtree may be viewed as a

code tree itself, and each subtree is optimal if the main tree is optimal. It is easily

proved that, given a (potentially in�nite) probability distribution with �nite entropy,

optimality of a code is equivalent to optimality of the codes associated with all its

28 CHAPTER 2. EXPONENTIAL PENALTIES

respective compatible subsets [49].

Given the weighting on nodes, we can de�ne a sibling property, an extension of a

concept due to Gallager in [29]:

De�nition 7 A binary code tree has the strong sibling property if each node, external

or internal, except the root, has a sibling and if the nodes can be listed in order of

nonincreasing weight with each node being adjacent in the list to its sibling.

Due to ties, a code tree with the strong sibling property may have nodes listed in

nonincreasing weight without siblings being adjacent. However, at least one ordering

must have all siblings adjacent. Also note that a code tree for alphabet X always has

2n� 1 nodes.

Theorem 2 A binary pre�x-free code is an exponential Hu�man code (with a � 1)

i� the code tree has the strong sibling property.

Proof: We use a method similar to that of Gallager. We wish �rst to prove a

binary code tree is an exponential Hu�man tree assuming the code tree has the strong

sibling property. This is trivial for n = 1; we may thus use induction and prove it

for n assuming it has been proved for n� 1. First observe that the last two elements

in the ordered list must be not only siblings, but also leaf nodes, since an internal

node must have a larger weight at least one of its descendents. (Because a � 1 and

pi > 0 8 i, both descendents have smaller weight, but this observation allows us to

relax this half of the proof to pn = 0 and a = 1, a case considered by Gallager, or to

a > 1
2
, a case we later consider.) These nodes may thus be siblings in an exponential

Hu�man code tree. Removing the siblings from the code tree and the two elements

from the list results in a reduced code tree with the sibling property and an ordered

list for an alphabet of size n� 1.

We now wish to prove an exponential Hu�man code tree has the strong sibling

property. Upon execution of the exponential Hu�man algorithm, we may generate

a list, initially empty, by adding each combined node pair to the start of the list,

putting the lesser weight after the greater if they do not have identical weight. Since

the weight of the combined node is greater than the weight of the siblings, this

2.3. PROPERTIES OF THE EXPONENTIAL PENALTY 29

(a) (b) (c)

1
8

1
8

1
8

3
8

3
8

3
8

1

16

1
16

1
16

3
16

3
16

3
16

1

32

1
32 1

32

1
32

1
32

1
32

3
32

3
32

3
32

3
64

3
64

3
64

3
128

3
128

3
128

3
128

3
128

3
128

Figure 2.5: Three optimal coding trees, p = (3
8
; 3
16
; 1
8
; 3
32
; 1
16
; 3
64
; 1
32
; 1
32
; 3
128
; 3
128

)

list con�rms the sibling property, being a list of nonincreasing weight with adjacent

siblings.

As previously stated, some optimal codes cannot be created via (exponential)

Hu�man coding, something that is easy to see via the strong sibling property. Fig-

ure 2.5 shows three optimal code trees for p = (3
8
; 3
16
; 1
8
; 3
32
; 1
16
; 3
64
; 1
32
; 1
32
; 3
128
; 3
128

) and

the standard coding problem (solved by the exponential Hu�man coding technique

for a = 1). Tree (a) and tree (b), although corresponding to di�erent length ensem-

bles, are both valid (standard) Hu�man coding trees (with item probabilities in leaf

nodes). Tree (c) also results in an optimal code, one with the same length ensemble

as (b), but is not a Hu�man coding tree, lacking the strong sibling property. Tree

(c) arises in practice, when, given the length ensemble of (b), one uses the top-down

Elias-based method discussed in Section 2.1 to construct an optimal tree. Thus, a

practical optimal tree may lack the sibling property. Nevertheless, this property is

an e�ective tool for proving an exponential Hu�man tree's optimality.

30 CHAPTER 2. EXPONENTIAL PENALTIES

2.3.2 Interval properties

As previously indicated, taking a # 1, exponential Hu�man coding is equivalent

to Hu�man coding. However, only one of the possibly multiple Hu�man length

ensembles is produced by exponential Hu�man coding at a = 1 + �, where � is an

arbitrarily small number greater than 0. We further extend and quantify this in the

theorem below.

Theorem 3 There are only a �nite number of ai 2 (1;+1) such that Fai(LX ;p)

does not have a unique minimizing LX . Consequently, for all a 2 [1;+1), there

exists an �0 > 0 such that, for all 0 < � < �0, Fa+�(LX ;p) has a unique minimizing

LX .

Proof: With a �nite alphabet, LX may take on only a �nite set of values fLkXg

(k 2 S(m) , f1; 2; : : : ; mg for some m) satisfying the Kraft inequality with equality.

For a �xed LkX , Fa(L
k
X ;p) is a nonzero polynomial in a. Thus, for j; k 2 S(m), j 6= k,

Fa(L
j
X ;p)� Fa(L

k
X ;p) is also a nonzero polynomial.

Since there are a �nite number of di�erence polynomials, each of which has a �nite

number of zero-crossings, there may only be a �nite number of points at which a tie

may occur.

Then at any point a0 2 [1;+1) there exists an �0 > 0 and a k0 2 S(m) such that

Fa(L
k0
X) < Fa(L

j
X) for all j 2 S(m)nfk0g and all a 2 (a0; a0 + �0),

Thus by specifying a bias toward the positive (or negative), every value of a may

correspond to the unique length ensemble of its right (left) �-interval. For a = 1, the

right interval contains the Hu�man code that minimizes variance, as in (2.7). The

uniqueness of this minimum variance code was shown by Kou in [55].

A consequence of Theorem 3 is that R+ consists of open intervals | each of which

corresponds to a certain code minimizing Fb(LX ;p) | and points separating them,

at which ties occur. In other words, if Fp(b) , fLX j Fb(LX ;p) � Fb(L
0
X ;p) 8 L

0
Xg,

then Fsp(b) is a one-item set for all but a �nite number of values of b 2 R+ , at which

it is larger.

For example, consider p(1) , (4
9
; 1
4
; 19
180
; 1
10
; 1
10
). For the range b < lg 5

4
, F

p
(1)(b) =

ff1; 2; 3; 4; 4gg. For b > lg 5
4
, F

p
(1)(b) = ff2; 2; 2; 3; 3gg. At tie point b = lg 5

4
, both

2.3. PROPERTIES OF THE EXPONENTIAL PENALTY 31

length ensembles are optimal, as is f1; 3; 3; 3; 3g; all three are in F
p
(1)(b). In contrast,

p
(2) , (0:58; 0:12; 0:11; 0:1; 0:09) has no three-way ties, but does have a transitional

(two-way) tie at b = lg 58
23
.

Using 1 + � provides us with an alternate proof of Hu�man coding optimality,

but one which applies only to the minimum variance length ensemble. This is also

an alternative method of Hu�man coding; by keeping track of �'s, one can produce

an optimal Hu�man code with minimum variance among such codes. We term this

epsilon Hu�man coding.

This coding method is equivalent to others found throughout the literature. The

�rst occurrence of this is also the simplest, called bottom-merge Hu�man coding,

introduced by Schwartz in [84]. It yields a code CX with the aforementioned unique

LX . At the time, this was noted to simultaneously minimize two values among optimal

codes. First, of the optimal trees, the bottom-merge code has minimal maximal

length. Second, it has minimal sum of lengths,
P

i li, a measure of tree atness

(balance). Note that while the nondeterministic Hu�man algorithm may yield trees

(a) and (b) in Figure 2.5, only the tree in (b) is found using bottom-merge or epsilon

Hu�man coding.

Practical implementation of bottom-merge coding is done in linear time with two

queues | one for singletons, one for combined items | both ordered by probability.

Given ties in probabilities, the bottom-merge method prefers merging singletons be-

fore combined items. Since combined items are then put at the end of the combined

item queue in order of formation, the queue is secondarily ordered by maximum

length, and we thus minimize maximum length via this bottom-merge two-queue

method [91].

By preferring combined items, one may obtain a top-merge code, one which max-

imizes the previously discussed values instead of minimizing them. Examples of

both are in Figure 2.6, in which we consider the status of Hu�man coding for

p = (3
8
; 3
16
; 1
8
; 3
32
; 1
16
; 3
64
; 1
32
; 1
32
; 3
128
; 3
128

) in the penultimate step of the algorithm. Pre-

vious to this step, the collection of combined trees consists of the three trees shown

in (a) | one consisting of a single item, one consisting of �ve items (represented by

either the tree itself or the 3
8
circle) and one consisting of four items (represented by

32 CHAPTER 2. EXPONENTIAL PENALTIES

(a)

(e)

(d)

(c)

(b)

1
4

1
4

1
4

1

4

1
8

3
8

3
8

3
8

3
8

3

8

3
8

3
8

3
8

1

16

3
16

1
32

1
32

3
32

3
64

3
128

3
128

Figure 2.6: Bottom-merging versus top-merging

either the tree itself or the 1
4
circle). The singleton queue is (b) and the combined

item queue is (c). If a bottom-merge algorithm is used, the 3
8
singleton is merged

with the 1
4
tree, and the tree in (d) (or Figure 2.5(b)) results after the algorithm

terminates. If a top-merge algorithm is used, the 3
8
�ve-item tree is merged with the

1
4
tree, and the tree in (e) (Figure 2.5(a)) results.

The bottom-merge results of Schwartz have been further extended. Depending

on context, the code has been called a minimum variance Hu�man code [55], best

Hu�man tree [68], compact Hu�man tree [38], or minimal Hu�man tree [27]. It was

also considered algebraically by Knuth in [53]. In all cases, the resulting output is

the unique length ensemble that, of the possible Hu�man codes, minimizes all of a

number of functions including: all weighted moments
P

i pijli � cj� for c 2 R, � > 1

(including variance); all unweighted moments about zero
P

i l
�
i for � > 0 (including

sum of and maximum of lengths); and any convex function of the lengths (including,

of course, Fb(LX ;p)) [27, 68].

2.4. ANOTHER EXPONENTIAL PENALTY 33

The bottom-merge code is also always the lexicographically �rst of the optimal

set of Hu�man length ensembles (when lengths are sorted in decreasing order). We

return to this topic later; more can be found in the cited papers. (Note, however,

that many papers wrongly attribute to Tamaki [87] the connection between epsilon

Hu�man coding and Hu�man coding for minimum variance | which may be easily

seen by the expansion of the �rst equation in (2.7). While Tamaki's observations

on optimal trees are noteworthy, they do not include the aforementioned connection,

noted in [53, 55, 78], among others.)

2.4 Another exponential penalty

If 0 < a < 1 (b < 0), minimization of
P

i pia
li is not an interesting goal, but maxi-

mization is. The tools for maximization of this value have been largely seen as a side

e�ect of the tools for minimization for a > 1 [45]. However, there are situations in

which one might wish a penalty of this form.

2.4.1 Motivation

Consider the following problem: We have an inde�nite open window of time in which

to transmit a message at constant bitrate. We will not know the duration of this

window until it closes, and only a complete message codeword is useful. The period

could be a brief period of contact to a remote device usually out of range, such as

a mobile phone or remote exploration device. Alternatively, it could be a period

of transmission before an adversary cuts communication lines or ends a siege, as in

R�enyi's telling of the story of the Bar Kochba revolt.

Assume the duration of the window of opportunity is independent of the com-

municated message, X, and is memoryless. Memorylessness implies that the window

duration is distributed exponentially. Therefore, if we quantize the time in terms

of bits we may send within our window, T , this random variable is geometrically

distributed, that is,

34 CHAPTER 2. EXPONENTIAL PENALTIES

PfT = tg = (1� a)at; t = 0; 1; 2; : : : (2.31)

with known parameter a < 1. We then wish to maximize the following probability:

Pfl(X) � Tg =

1X
t=0

PfT = tg � Pfl(X) � tg (2.32)

=

1X
t=0

(1� a)at �
nX
i=1

pi1li�t (2.33)

=

nX
i=1

pi � (1� a)

1X
t=li

at (2.34)

=

nX
i=1

pia
li � (1� a)

1X
t=0

at (2.35)

=

nX
i=1

pia
li: (2.36)

Thus this is the expectation of a utility function | which may be viewed as

negative cost | decaying exponentially with time (or length). In this case, then, we

wish to maximize the expectation of a decaying exponential instead of minimizing the

expectation of a growing exponential. These two problems may at �rst seem di�erent,

but their solutions are similar.

2.4.2 Problem structure and solution

The utility function here is f(l) = al = 2bl for a 2 (0; 1) (b 2 (�1; 0)). Then we wish

to maximize F (LX ;p) = Ep[f(l(X))] subject to the Kraft inequality. Equivalently,

we wish to minimize cost function F�(LX ;p) , �F (LX ;p) (minimizing as in (2.2))

or G(LX ;p) (minimizing quasilinear Campbell formulation as in (2.3)). Note that

the latter average is that used by risk-seeking optimization algorithms [94].

Before solving this problem, we should �rst note and emphasize that this formu-

lation is not the minimization of a convex function. Still, it has many properties in

common with the previously considered penalty, as well as with standard Hu�man

2.4. ANOTHER EXPONENTIAL PENALTY 35

coding.

If exponential parameter b � �1, the real-valued problem has no maximum L
y
X

in RjX j , as supLX F (LX ;p) = p1, which is maximized by L+1
X , f0;+1; � � � ;+1g.

This implies that, in some sense, it is best not to transmit but merely to assume the

maximum likelihood solution for such extreme utility functions. In the case of the

fortress, if we alter the problem slightly to allow action without a received message,

it is optimal to defend the fortress as though the most likely event is the one that

is occurring. However, in the problem formulation we wish to know a message with

certainty, and thus this is not practical.

Note that, if b = �1 and p1 = p2, any combination of lengths for the tied maximum

probabilities satisfying the Kraft inequality with equality yields supLX F (LX ;p) = p1.

Thus there is no unique value, �nite or otherwise, for LyX in this situation.

However, for b 2 (�1; 0), a more realistic range of parameters, equations (2.8{

2.17) still apply if we replace J with �J� and � with ���. Thus, the solutions

remain the same, but, for example, (2.13) becomes

�� = �b �

 X
j

pj
1

1+b

!1+b

� 0: (2.37)

This type of exponential penalty problem is not a convex problem, but we never-

theless know the real-valued solution of the form in (2.14{2.15) is optimal because the

Karush-Kuhn-Tucker conditions are satis�ed, and F�(LX ;p) (or G(LX ;p)) is thus

minimized. The expressions for the objective function at this value (2.16) and the

bounds (2.21) for the optimal integer solution, L�X , remain the same as well. These

bounds in terms of the example of maximizing probability of message communication

in Section 2.4.1 are

2bH�(p)+1 < max
LX

Pfl(X) � Tg � 2bH�(p) (2.38)

where we recall that � = 1
1+b

and a = 2b 2 (0:5; 1) is the parameter of the geometric

distribution of T . As before, equality holds i� the ideal solution has all integer lengths.

Thus R�enyi's siege dilemma, appropriately, has a solution connected to R�enyi entropy.

36 CHAPTER 2. EXPONENTIAL PENALTIES

For b � �1, the analogous bounds are obtained by substituting L+1
X into (2.20),

yielding 1
b
lg p1 � G(L�X) <

1
b
lg p1 + 1 and p12

b < F (L�X) � p1, analogous to (2.21)

and (2.22), respectively.

For example, if p = (4
9
; 1
4
; 19
180
; 1
10
; 1
10
) and b � �1, 2b+2

9
< F (L�X) �

4
9
. For all b < 0,

Lemma 1 still applies (to F�(LX ;p) or G(LX ;p)) since it only assumes monotonicity.

All the assumptions of Theorem 1 still hold as well | the only change is that

equations (2.26{2.30) prove a maximization (of F (CX ;w)) while Lemma 1 proves

minimization. Thus exponential Hu�man coding works for this penalty, and, com-

bining with our previous results:

Theorem 4 The exponential Hu�man algorithm is optimal for all b 2 R (a > 0).

For b = 0, it is Hu�man coding, b > 0 was proved in Theorem 1, and, for b < 0, if

C� is an exponential Hu�man code for parameter b, and C is any other code, then

F�
b (C

�;p) � F�
b (C;p), i.e., Fb(C

�;p) � Fb(C;p), and thus exponential Hu�man

coding for b < 0 maximizes expected utility.

2.5 Properties of both exponential penalties

2.5.1 Sibling property

Although the above theorem extends to this new exponential case, Theorem 2 no

longer holds, that is, the strong sibling property is no longer necessary to have an

exponential Hu�man tree. A trivial counterexample is a = 2
3
and p = (3

4
; 1
4
). However,

this property is suÆcient for a > 1
2
(b > �1), implying an exponential Hu�man tree

when it does occur, as noted in the parenthetical comment in the proof to Theorem 2.

Given an exponential Hu�man tree, the following weaker property holds:

De�nition 8 A binary code tree has the weak sibling property if each node (except

the root) has a sibling, if the leaf nodes can be listed in order of nonincreasing weight

with each node being adjacent in the list to its sibling if the sibling is also a leaf node,

and if every extended subtree has the identical property with its associated subset.

2.5. PROPERTIES OF BOTH EXPONENTIAL PENALTIES 37

This weakened property is a direct result of the exponential Hu�man coding pro-

cedure. In the case of a � 1, the weak sibling property, the strong sibling property,

and exponential Hu�man coding are equivalent. (Exponential Hu�man coding im-

plies the weak property, the weak property can be applied to the height-truncated

version of the optimal tree to obtain the strong property, and the strong property

was previously shown to imply Hu�man coding.)

2.5.2 Properties on the real line

For any p, if a < 1
2
(b < �1), the unary length ensemble, LX = f1; 2; � � � ; n�1; n�1g,

is the maximizing argument, which can be seen constructively using the fact that,

in exponential Hu�man coding for these values, combined weights are always less

than the maximum of the two original weights. Thus each step merely builds up the

maximal height tree.

Theorem 3 still holds for b 2 (�1; 0) (a 2 (0; 1)) so now we may view the entire

real line as consisting of open intervals | each of which corresponds to a certain code

optimizing Fb(LX ;p) | and points at which a tie occurs. We may thus extend the

de�nition of Fp(b) to b � 0:

Fp(b) ,

8>><
>>:

fLX 2 LjX j such that Fb(LX ;p) � Fb(L
0
X ;p) 8 L

0
X 2 LjX jg; b > 0

fLX 2 LjX j such that Ep[l(X)] � Ep[l
0(X)] 8 L0X 2 LjX jg; b = 0

fLX 2 LjX j such that Fb(LX ;p) � Fb(L
0
X ;p) 8 L

0
X 2 LjX jg; b < 0

(2.39)

where we recall that LjX j is the set of length ensembles satisfying the Kraft inequality

with equality. From the de�nition of Gb(LX ;p) given in (2.6), this is equivalent to

Fp(b) , fLX 2 LjX j such that Gb(LX ;p) � Gb(L
0
X ;p) 8 L

0
X 2 LjX jg: (2.40)

For all but a �nite set of points b 2 R, jFp(b)j = 1; on this set of points, there is at

least one tie, i.e., jFp(b)j > 1.

38 CHAPTER 2. EXPONENTIAL PENALTIES

Taking b " 0 (a " 1) yields an inverse epsilon Hu�man coding technique that

breaks ties by favoring tree codes with maximal variance, since the O(b) term in

the �rst equation of (2.7) is now negative. (This is identical to top-merge coding,

previously discussed.) If there is a unique Hu�man length ensemble LhuX , it may be

obtained using either method, being the unique solution of

LhuX = lim
b!0

�
argmin

LX

fGb(LX ;p)g

�
= lim

b!0

2
64argmin
P
i 2
�li�1;

li2N

fsgn(b) � Ep[2
bl(X)]g

3
75 (2.41)

where sgn(b) denotes the signum of b:

sgn(x) ,

8>><
>>:

1; x > 0

0; x = 0

�1; x < 0

(2.42)

The discontinuous signum function emphasizes that the exponential penalty prob-

lem may be properly viewed as two distinct problems, one for b > 0 and one for b < 0.

Nevertheless, as shown with equation (2.40), there is continuity; both positive and

negative have ideal solutions and actual algorithms of the same form, and, for b! 0,

both converge to optimal coding. Because of this solution, trees get more \at" with

increasing b and less \at" with decreasing b, a behavior expected for either problem,

and thus not surprising for the composite. We quantify this in Section 2.5.3.

For the previous example where p(1) = (4
9
; 1
4
; 19
180
; 1
10
; 1
10
), F

p
(1)(b) = ff1; 2; 3; 4; 4gg

8 b < lg 5
4
, with other b's as previously speci�ed. For p(2) = (0:58; 0:12; 0:11; 0:1; 0:09),

F
p
(2)(b) = ff1; 2; 3; 4; 4gg 8 b < lg 5

9
, F

p
(2)(b) = ff1; 3; 3; 3; 3gg 8 b 2 (lg 5

9
; lg 58

23
) and

F
p
(2)(b) = ff2; 2; 2; 3; 3gg 8 b > lg 58

23
. The transition values have two-way ties. This

is illustrated in Figure 2.7, where the top range represents the trees optimal for

p
(1) = (4

9
; 1
4
; 19
180
; 1
10
; 1
10
) and the bottom those for p(2) = (0:58; 0:12; 0:11; 0:1; 0:09).

For implementation purposes, it is noteworthy that the two-queue approach to

Hu�man coding extends directly to all values of b 2 R for exponential Hu�man

coding. Both queues remain ordered since the weight-combining method is linear.

2.5. PROPERTIES OF BOTH EXPONENTIAL PENALTIES 39

��

��

(1) (2) (3)

b

b

p
(1) = (4

9
; 1
4
; 19
180
; 1
10
; 1
10
):

p
(2) = (0:58; 0:12; 0:11; 0:1; 0:09):

1

1

�1

�1

lg 5
4

lg 5
9

lg 58
23

0

0

Figure 2.7: Optimal code trees for two di�erent distributions over the range of b 2 R

40 CHAPTER 2. EXPONENTIAL PENALTIES

The smallest item is always at the head of one of the two queues, and, with sorted

weights, exponential Hu�man coding has a linear time algorithm. An example for

b = 0 is shown in Figure 2.6. (Note that while this ordering seems counterintuitive

for b < �1, it holds because the combined items queue never contains more than one

item in this range of parameters. Thus a unary tree is always created.)

2.5.3 Interval properties

As with bottom-merge Hu�man coding, using a bottom-merge technique here yields a

deterministic algorithm which, for a given mass function, returns the minimum code

among optimal codes, thus minimizing maximal length among such codes. To prove

this, we need the following de�nitions and lemmas patterned after those of Forst and

Thorup in [27]. We later show the bottom-merge length ensemble for a and p is

equivalent to the unique length ensemble for a+ � and p.

De�nition 9 If i and j represent trees (as do, for example, codes, nodes or length

ensembles), length ensembles L(i) and L(j) have the relation L(i) > L(j) if j is

lexicographically smaller than i (when lengths are sorted in lexicographical order).

Addition for such ensembles refers to formation of a merged tree | one takes the

union of the sets and adds 1 to each element. Thus, for example, if i = f2; 2; 1g and

j = f1; 1g, then L(i) + L(j) = f3; 3; 2; 2; 2g. Denote the weight of the root node of

(sub)tree i as w(i). Note that leaf nodes are trivial subtrees. Then de�ne enhanced

weight w0 to have the relation w0(i) > w0(j) if either w(i) > w(j), or w(i) = w(j)

and L(i) > L(j). Addition for such enhanced weights also represents a merged tree

| one adds their length ensembles and uses weight w(k) = a � (w(i) + w(j)). If W

represents the set of (leaf node) weights, a W tree is one with weights W that is

Hu�man-constructible. Finally, h(i) , maxl2L(i) l is the height, or maximal length

codeword, associated with tree i.

Lemma 2 Let W be a set of weights with jWj � 2. Suppose T0 is a minimal expo-

nential Hu�man tree, that is, the optimal tree that is minimum lexicographically. We

know there are at least two items corresponding to leaf nodes at level h(T0); denote

2.5. PROPERTIES OF BOTH EXPONENTIAL PENALTIES 41

them u and v. Suppose W 0 denotes the set of weights with items u and v replaced by

item x of weight w(x) = a�(w(u)+w(v)). Let T1 denote theW
0 tree which is T0 with u

and v nodes pruned (deleted), their parent node becoming the leaf node corresponding

to item x. If there exists a distinct optimal exponential Hu�man tree T2 for W
0 such

that every item of weight w(x) has level at least h(T0), then L(T2) > L(T1).

Proof: We have h(T2) � h(T0) � h(T1). Unless all are equalities, L(T2) > L(T1),

which is what we set out to prove. We may thus assume h(T2) = h(T0) = h(T1). Call

this height h and the number of leaf nodes in T1 at level h, nh.

Note �rst that this implies T1 is an optimal tree for W 0 with x at level h� 1 of a

tree of height h. Then, due to this optimality, w(x) cannot be smaller than all other

weights in W 0. Thus w(x) � max(w(u); w(v)), since u and v have the lowest weights

in W.

Refer to the ith leaf node of T1 at lowest level h as �i(T1). For each such leaf

node, w(�i(T1)) � w(x), since x is at level h � 1. (This is due to Lemma 1; recall

that this still holds for the leaf nodes of exponential Hu�man trees.) But in T2, x is

on level h since we asserted in our conditions it can be no less and, since h = h(T2),

it can be no more. Thus T2 has more leaf nodes than T1 at level h, and is therefore

lexicographically greater.

Lemma 3 Let W and W 0 represent weights as in the previous lemma. Suppose T �

and T 0� are (exponential) Hu�man trees for W and W 0, respectively. Suppose further

that T 0� is minimal and in T � all leaf nodes of weight w(x) = a � (w(u)+w(v)) are at

levels h(T �)� 1 or h(T �). Then T � is minimal as well.

Proof: Let T be an arbitrary (exponential) Hu�man tree for W. Then there are

nodes of weight w(u) and w(v) that are siblings and may thus be pruned to form

a new tree, T 0, optimal for W 0. L(T 0�) � L(T 0) due to T 0� being minimal. The

contrapositive of the previous lemma implies that there is a leaf node of weight w(x)

at level strictly less than h(T) in T 0�. Therefore, since all leaf nodes of weight w(x) in

T � are at levels h(T �)� 1 or h(T �), L(T �) � L(T) for all such T , and T � is minimal.

42 CHAPTER 2. EXPONENTIAL PENALTIES

Lemma 4 Suppose i; j; k represent trees and L(i) < L(j). Then L(i) + L(k) <

L(j) + L(k).

Proof: Let �(L(i); r) represent the rth entry of L(i). Then, if L(i) < L(j), there

exists a positive integer s such that �(L(i); r) = �(L(j); r) 8 r < s and �(L(i); s) <

�(L(j); s). Let � = ��1(L(k); �) denote the last position in L(k) for which �(L(k); �) �

�, or 0 if �(L(k); 1) < �. Then L(i) + L(k) and L(j) + L(k) �rst di�er at position

�� = s+��1(L(k); �(L(j); s)), with �(L(i)+L(k); ��) = 1+�(L(i); s) < 1+�(L(j); s) =

�(L(j) + L(k); ��) and thus L(i) < L(j).

We can now prove the theorem.

Theorem 5 The bottom-merge exponential Hu�man algorithm returns the minimum

length ensemble among all optimal codes.

Proof: Recall that the bottom-merge algorithm uses two queues. Without loss

of generality, we consider the two queues to be one, and the combined tree weight,

instead of going to the end of the combined tree queue, is inserted just before the �rst

singleton of greater weight, or at the end of the queue if there is no such singleton.

It is easily seen that this is equivalent to the bottom-merge case.

This induces an enhanced weight ordering w0 on items, which is trivial initially

(w0 = fw; f0gg). We wish to show inductively that the minimal optimal tree is always

created.

We �rst wish to show how items representing trees combine. Denote by q
(n)
i the

kth item in the queue (relative to the head) at step n. Ties occur only when w(q
(n)
2) =

w(q
(n)
3), so we may assume this to be the case. We consider two cases according to

whether or not w(q
(n)
1) = w(q

(n)
2). If they are not equal, then the minimal tree of those

with weight a � (w(q
(n)
1)+w(q

(n)
2)) is the one formed by combining q

(n)
1 and q

(n)
2 , due to

Lemma 4. If they are equal, then the minimal tree is similarly obtained for like reasons

unless w(q
(n)
1) = w(q

(n)
2) = w(q

(n)
3) = w(q

(n)
4). If this is the case, then suppose we take

items q
(n)
u and q

(n)
v . Then L(q

(n)
u) +L(q

(n)
v) � L(q

(n)
1) +L(q

(n)
v) � L(q

(n)
1) +L(q

(n)
2), so

taking the �rst two is always minimal among combined items of that weight.

We know that the resulting tree T is an optimal tree, so we need to prove that

the above implies it has minimal weight. Inductively assume subtree T 0 for weights

2.5. PROPERTIES OF BOTH EXPONENTIAL PENALTIES 43

W 0 (as de�ned in Lemma 3 with x, u, and v) is minimal. (The base case is trivial.)

Note that, in T 0, if w(j) = w(k) and L(j) > L(k), then lj � lk. If these were not the

case, switching the node positions would result in a smaller value for L(T 0), which

is minimal. Thus, no leaf node of weight w(x) may be on a level less than h(T)� 1

since L(x) > f0g, the length ensemble for a singleton. Thus, from Lemma 3, T must

be minimal as well.

We next wish to prove that bottom-merge exponential Hu�man coding for a is

equivalent, for some suÆciently small �0, to exponential Hu�man coding for a+ � for

any � 2 (0; �0). This has already been shown for a = 1 by Forst and Thorup in [27],

so here we consider only cases a > 1 and 0 < a < 1. Note �rst that

X
i

wi(a+ �)
li =

X
i

wia
li + �

X
i

wilia
li�1 +O(�2) (2.43)

so the a + � length ensemble is optimal for a and minimizes sgn(lg a) �
P

iwilia
li�1

among a-optimal solutions. In other words, if f1(x; y) , yax and f2(x; y) , yxax�1,

then (a+�)-exponential Hu�man coding minimizes sgn(lg a)�
P

i f1(li; wi) and, among

such optimal ensembles, �nds the ensemble such that, if ` ,
P

i (li; wi) for =

sgn(lg a) � f2(x; y), ` is minimized. Following [27], let us de�ne

Æ ;v;w;a(k) , (k + 1; v) + (k + 1; w)� (k; a � (v + w)): (2.44)

Based on f2,

sgn(lg a) � Æf2;v;w;a(k) = f2(k + 1; v) + f2(k + 1; w)� f2(k; a � (v + w)) (2.45)

= �(v + w)kak + v(k + 1)ak + w(k + 1)ak (2.46)

= (v + w)ak: (2.47)

For a tree T with t leaf nodes of weight wfTg (enumerated such that w
fTg
t is the

smallest weight), further de�ne Æ ;a(T) , Æ
 ;w

fTg
t ;w

fTg
t�1

;a
(h(T)� 1). We may thus show

the following:

44 CHAPTER 2. EXPONENTIAL PENALTIES

Theorem 6 If a 6= 1, the minimum Hu�man tree minimizes
P

i (li; wi) among

optimal Hu�man trees for any that, like sgn(lg a)�f2(x; y), has Æ ;v;w;a(k) increasing

in k. Consequently, since this was already shown for a = 1 in [27], the bottom-merge

length ensemble for all a 2 R is equivalent to the unique length ensemble for a+ �.

Proof: This may be shown via induction on the tree size, since this implication

trivially holds for a tree with two items. We may thus assume it holds for W 0, the

set of weights introduced in Lemma 2. Given a nonminimum W 0-Hu�man tree Q0

and minimum Hu�man tree S 0, we thus have ` (S 0) � ` (Q
0). (If there are no other

W 0-Hu�man trees, then we are done.) Note also that, because the smallest two nodes

cannot be any higher than in S, Æ ;a(S) � Æ ;a(Q).

Thus, combining this with the minimal height of minimal trees:

` (S) = Æ ;a(S) + ` (S
0) (2.48)

� Æ ;a(Q) + ` (Q
0) (2.49)

= ` (Q): (2.50)

The equalities are due to the de�nition of Æ ;a(k). Thus, the bottom-merge tree is

optimal for all secondary (x; y) for which Æ ;a(k) is increasing. This argument may

be repeated for strictly increasing Æ ;a(k) using strict inequality between distinct trees

to show uniqueness of this -minimum result. Take (x; y) = sgn(lg a) � f2(x; y) =

sgn(lg a)�yxax�1. Since Æf2;v;w;a(k) as in (2.47) is strictly increasing, (a+�)-exponential

Hu�man coding is identical to bottom-merge Hu�man coding.

This result illuminates the structure of the problem in a more speci�c manner

than Theorem 3; the intervals corresponding to ranges of solutions must be lexico-

graphically nonincreasing. Using methods parallel to those used in Lemmas 2{4 and

Theorems 5{6, it may be shown that tie points have an interval corresponding to

their minimum exponential Hu�man tree to their right and an interval corresponding

to their maximum exponential Hu�man tree to their left.

Thus, with increasing b, the optimal tree is \attened" in terms of lexicographical

order. Figure 2.7 has two previously discussed examples of this. More speci�cally, if

2.6. EXTENDING TO OTHER PENALTIES 45

a given probability mass function has identical exponential Hu�man trees for a = a1

and a = a2, then the tree is optimal for all points in the interval de�ned by the two

points. Another result of this property for the left interval is the uniqueness of the

maximum variance Hu�man code, a code identical to the top-merge Hu�man code.

If limited by length, one may wish to �nd a reasonably low value of b suÆciently

high so ln � lmax for some lmax. Due to the above properties, such a value may

be found via binary search over b. The code obtained is not necessarily the same

as the optimal code for b = 0 limited to the set of codes with this property. The

latter problem, previously solved, is one we consider in Chapter 4 and one that can

be formulated (4.24) as with other problems in this chapter.

As a side note, we mention that we can easily extend the exponential Hu�man

algorithm to D-ary alphabets in the same manner as for Hu�man coding.

2.6 Extending to other penalties

One might be tempted to see whether a generalization of the Hu�man method extends

to other expectation penalties beyond the linear and exponential cases. We briey

present an intuitive sketch for why, in some sense, it cannot, with citations to previous

work with more involved discussions on this topic.

Let us �rst extend the de�nition of f(l) : N ! R
+ to f(l) : R+ ! R

+ . We

may assume, without loss of generality, that f is a monotonic function with no zero-

crossings which is in the set C2, i.e., the �rst two derivatives (f 0; f 00) exist and are

continuous at all points. In addition, let us assume that, because values at l 2 R+nN

are not evaluated, any equalities found for all l 2 N may be assumed to apply over

all l > 0 without loss of generality. (Without this assumption, a piecewise smooth

polynomial approximation of the exponential would work in spite of it being only a

trivial extension.)

Let L ~X denote the lengths of the optimal alphabet of the code formed after the

�rst step of coding via the Hu�man method. We then need F (LX ;p)�F (L ~X ;p) to be

independent of LX in order to yield a set of equalities like (2.26{2.30). We also assume

that weights are added upon merging, followed by a functional transformation �, that

46 CHAPTER 2. EXPONENTIAL PENALTIES

is, �(wj; wk) = �(wj + wk). This seems necessary for symmetry, and, although it is

actually not [39], this is a good �rst approximation.

With the above assumptions, we �nd

F (LX ;p)� F (L ~X ;p) independent of LX (2.51)

, 9 �(w) such that �(l; w) , f(l+1)w��(w)
f(l)

independent of l (2.52)

, 9 �(w) such that @�
@l
= f(l)f 0(l+1)w�[f(l+1)w��(w)]f 0(l)

f2(l)
= 0 (2.53)

, �(w)

w
= f(l + 1)� f(l)f 0(l+1)

f 0(l)
independent of l (2.54)

, f 00(l)

f 0(l)
= f 00(l+1)

f 0(l+1)
(2.55)

, d
dl
ln d

dl
f(l) = 0 (2.56)

, 9 r; s; c 2 R such that f(l) = r
R l
1
esxdx+ c: (2.57)

Recall that �(w) models the merge step of Hu�man(-like) coding; it is of thus of the

form �(wn�1 + wn) = a � (wn�1 + wn) in (2.28). The form of (2.28) yields (2.51) ,

(2.52). Equation (2.53) is obtained due to independence i� zero partial derivative, as

is (2.55); in both cases, we know f 0(l) > 0. Solving this, we �nd that the proposed

technique works for and only for linear and exponential functions. This was noted

without formal proof in [45].

In addition to being Hu�man codable, these penalties have another distinguishing

characteristic:

De�nition 10 When referring to averages, additivity on function f is the follow-

ing property for any product distribution p � q and lengths of the form ki and lj:

f�1f
P

i

P
j piqjf(ki + lj)g = f�1f

P
i pif(ki)g+ f�1f

P
j qjf(li)g.

We see how this is a desirable property in that the matter of whether an outcome

is considered as one message or two is not of arbitrary importance as it would be

for other penalties. Two independent messages have the same summed penalty as

the penalty on the product distribution for the code formed by concatenating the

messages. Optimizing for combined items can make the one bit range of the inequality

2.6. EXTENDING TO OTHER PENALTIES 47

of (2.21) an arbitrarily small proportion of the overall penalty, one of the fundamental

properties of Shannon source coding.

The exponential and linear means of the form Gb(LX ;p) are the only quasilin-

ear average codeword length penalties for binary codes [5]. Knuth in [53] noted the

connection between this and the limited ability to generalize Hu�man codes. As ad-

ditivity is a desirable property, however, this family of problems solved is nonetheless

signi�cant.

Still, there are motivations for extending the penalties to a di�erent family, espe-

cially when only one message is encoded in a given time period and/or when there is

a (nondeterministic) stochastic model of encoding frequency. This may be done via

algorithms unrelated to the Hu�man algorithm [24,58,59]; we consider variants of one

such algorithm in Chapter 4. There are also alternative methods for the extension of

Hu�man coding to other penalties. The best-known methods involve generalization

of arithmetic operations, e.g., using maximization or ordered pairs [18, 39, 53]. The

method we consider next, however, does not.

Chapter 3

Redundancy penalties

In this chapter, we introduce a new penalty class, �nding this new framework to

shed new light on previously proposed problems, including improved solutions to one

problem in particular, and a single expression for a set of source coding bounds.

3.1 Motivation, method, and properties

3.1.1 d-average b-redundancy (DABR)

An additional logical penalty might be one that minimizes some measure of \devia-

tion" of actual codeword lengths from their ideal values.

De�nition 11 Pointwise b-redundancy, rb(i), is the di�erence between actual and

ideal codeword lengths, that is, rb(i) , li� l
y
i (b;p), where previously de�ned l

y
i (b;p) is

a function of b and p, with the explicit value given in (2.14):

lyi (b;p) = �
1

1 + b
lg pi + lg

X
j

pj
1

1+b (3.1)

for �1 < b < +1. We de�ne l
y
i via limiting for b = �1 and b = +1. For b = �1,

if M = fmi j p1 = pig, l
y
i (�1;p) is equal to lg jM j for M and +1 otherwise. For

b = +1, l
y
i (+1;p) = lg jX j 8 i 2 X . (We do not consider the case b < �1; in this

48

3.1. MOTIVATION, METHOD, AND PROPERTIES 49

case lyi should be 0 for l1 and +1 for all other li, but we ignore this, viewing it as a

degenerate case.)

We should stress that pointwise b-redundancy applies to an individual codeword

with a given probability, measuring how the codeword's length varies from the ideal

codeword length for exponential Hu�man (minimal �-average) coding. It is easily

seen that pointwise b-redundancy may be negative for a given codeword and must be

negative for at least one codeword in any code for which the Kraft inequality holds

with equality.

Because b-redundancy may be negative for a given codeword, the moment about

zero, fEp[(rb(X))d]g1=d, cannot be used as a penalty. (Take, for example, p = (1
3
; 1
3
; 1
3
),

b = 0 and d = 5. In this case, fEp[(rb(X))d]g1=d is not real or unique, being the root

of a negative number.) The analogue of moment for random variables that take on

negative values is 1
d
lgEp[2

dX] [94], also known as the �-average [7], a function we

have seen before.

Applying this yields a new penalty:

De�nition 12 d-average b-redundancy, or DABR, is

Rb;d(LX) ,
1

d
lgEp[2

drb(X)] =
1

d
lg
X
i

pi2
d[li�lyi (b;p)]: (3.2)

The goal now is to minimize DABR, that is, to solve

L
b;d
X , argmin

P
i 2
�li�1;

li2N

Rb;d(LX) = argmin
P
i 2
�li�1;

li2N

1

d
lgEpf2

d[rb(X)]g (3.3)

where the Kraft inequality restriction on li will be implicit from here on.

Note that since each lyi is a function of p, DABR is not linear with p. Thus, it

is a subset of a problem more general than that given in (2.2) and (2.3), and thus

the analysis of Section 2.6 no longer applies. The more general problem formulation,

previously introduced (2.1), is as follows:

50 CHAPTER 3. REDUNDANCY PENALTIES

Given p 2 �0

f : N � [0; 1]! R [f+1g

Minimize fLX g
P

i f(li; pi)

subject to
P

i 2
�li � 1

li 2 N

(3.4)

(In DABR, f(li; pi) should take on negative values for d < 0.) We later concern

ourselves with other subproblems of forms (2.1), (2.2), and (2.3), but, because we

will �nd that minimal DABR coding is a natural extension of Hu�man coding and

exponential Hu�man coding, we �rst examine the DABR penalty. Below we �nd that

it actually covers a number of familiar cases.

For b 2 (�1;+1) and d 2 R, we may substitute for rb(i) as follows:

Rb;d(LX) =
1

d
lgEp[2

drb(X)] (3.5)

=
1

d
lg

1P
j p

1

1+b

j

Ep[p(X)
d

1+b2dl(X)] (3.6)

=
1

d
lg
X
i

2
4 p

1+b+d
1+b

iP
j p

1

1+b

j

2dli

3
5 : (3.7)

Since the summation in the denominator is strictly positive and constant with

di�erent length ensembles we may remove it

R0b;d(LX) ,
1

d
lg
X
i

p
1+b+d
1+b

i 2dli (3.8)

or normalize

R
b;d
0 (LX) ,

1

d
lg
X
i

2
4 p

1+b+d
1+b

iP
j p

1+b+d
1+b

j

2dli

3
5 ; (3.9)

3.1. MOTIVATION, METHOD, AND PROPERTIES 51

which reduces the problem to an exponential Hu�man coding problem. Thus the

linear time algorithms and general properties derived for the problem solved by ex-

ponential Hu�man coding extend to this two-dimensional version.

De�nition 13 DABR Hu�man coding is the application of exponential Hu�man cod-

ing for exponent d and modi�ed weights wb;di , p
1+b+d
1+b

i (or the normalized forms in

(3.9)). This is feasible when dealing with b 2 (�1;+1) and d 2 R.

This algorithm allows for the possibility of ties. As with the exponential case, a

bottom-merge version of DABR Hu�man coding deterministically returns the min-

imum optimal code. This is easily seen by reduction to the exponential case with

modi�ed weights wb;di .

Unlike with exponential Hu�man coding, however, optimal li may decrease with i.

This occurs for b+ d+ 1 � 0. For limit values of b and d, we take the limit of b �rst,

so we derive the proper lyi 's, then d. For all p, if d < �1, the optimal code is not a

function of p; it is always a unary code. (For b > �d � 1, the most probable item

has the shortest codeword; for b < �d � 1, the least probable item has the shortest

codeword; and for b = �d� 1, the codeword assignments do not matter.)

Thus the range of nontrivial cases for minimal DABR codes for a given probability

space may be considered to be parameterized by b � d 2 [�1;+1] � [�1;+1], as

shown in Figure 3.1. The crosshatched region is the one in which the least probable

item has the shortest codeword, and the rest of the shaded region contains the other

nonconvex penalty points.

Equation (3.9) puts the problem into a form that is a superset of (2.3) and a

subset of (3.4), known as quasilinear with a weight function:

Given p 2 �0

strictly monotonic f 2 C0 : R+ ! R
+

' 2 C0 : [0; 1]! R
+

Minimize fLX g f�1 (
P

i '(pi)f(li)=
P

i '(pi))

subject to
P

i 2
�li � 1

li 2 N

(3.10)

52 CHAPTER 3. REDUNDANCY PENALTIES

Instances of this problem can, for jX j < +1, always be normalized and thus reduced

to a quasilinear problem without weights.

3.1.2 Special cases

The problem of d-average b-redundancy actually includes a number of previously

examined problems, each of which is a subset of the b� d quadrant. If b = +1, the

modi�ed problem is equivalent to the problem solved via the exponential Hu�man

coding algorithm, as

1

d
lgEpf2

d[rb(X)]g =
1

d
lg
X
i

pi

�
2dli

2dl
y
i (b;p)

�
=

1

d
lgEp[2

dl(X)]� lg jX j; (3.11)

so minimizing this minimizes 1
d
lgEp[2

dl(X)].

If b = 0, the actual codeword lengths are compared to the Shannon ideal codeword

length of � lg pi, sometimes called self-information [50]. The following de�nition is

useful:

De�nition 14 Pointwise redundancy, or pointwise 0-redundancy, is r0(i) = li �

lyi (0;p) = li � (� lg pi) = li + lg pi, the di�erence between the actual codeword length

and the Shannon ideal codeword length for codeword ci.

Unless it is uniformly 0, pointwise redundancy must be negative for at least one code-

word of the optimal code, but for any uniquely decodable code the average point-

wise redundancy | or average redundancy for short | is never negative. Further-

more, since the �-average function is nondecreasing, R0;d
p
(LX) � 0 8 d � 0, including

R0;+1
p

(LX), maximal redundancy.

3.1. MOTIVATION, METHOD, AND PROPERTIES 53

������������������
������������������
������������������

������������������
������������������
������������������

���
���
���

���
���
���

d

b

minimum maximum b-redundancy

minimum maximum redundancy

dth exponential redundancy

exponential Hu�man coding

bottom-merge Hu�man coding

(standard) Hu�man coding

�1
�1

1

10

0

Figure 3.1: Parameter space for minimal DABR coding with notable special cases

De�nition 15 dth exponential redundancy is DABR for b = 0:

L0;d
X = argmin

LX

R0;d
p
(LX) (3.12)

= argmin
LX

1

d
lgEpf2

d[l(X)+lg pX]g (3.13)

= argmin
LX

1

d
lg
X
i

"
p1+diP
j p

1+d
j

2dli

#
: (3.14)

We comment further on this problem in the next section.

An alternative formulation for the Hu�man coding problem is the minimization of

average redundancy, which may be called the 0th exponential redundancy problem.

Note that, in fact, if we have d! 0 for any value of b in equation (3.3) then

54 CHAPTER 3. REDUNDANCY PENALTIES

lim
d!0

1

d
lgEpf2

d[rb(X)]g = Ep[rb(X)] = Ep[l(X)]�
X
i

pil
y
i (b;p) (3.15)

and so this is equivalent to the Hu�man coding problem for any value of b. For

b = +1, approaching d " 0 or d # 0, as discussed, is equivalent to top-merge or

bottom-merge Hu�man coding, respectively.

Because taking d ! 0 always yields Hu�man coding, DABR does not include

as a special case minimization of
P

i p

i li for 6= 1. Clearly, however, this may

be solved using Hu�man coding on modi�ed weights (wi = pi). In the context of

minimal DABR coding, one can use the one-dimensional subset de�ned by the line

b = d=(� 1)� 1 to view the solution of minimizing
P

i p

i li as that lying in an open

interval on this line with one endpoint at d = 0 (b = �1).

3.1.3 Bounds

One can easily see that if we relax the integer constraint on length for minimizing

d-average b-redundancy, the real-valued solution is not LyX , but some di�erent LzX .

By substituting the solution in (3.9), we �nd

lzi = �
1 + b+ d

(1 + b)(1 + d)
lg pi + lg

 X
j

pj
1+b+d

(1+b)(1+d)

!
(3.16)

= �! lg pi + lg
X
j

pj
! (3.17)

where ! , 1+b+d
(1+b)(1+d)

= 1� bd
(1+b)(1+d)

.

Note that when the values of b and d are exchanged, the ideal solutions remain

the same. This problem thus has a high degree of symmetry. However, because the

problem itself is not symmetric, the symmetry of integer solutions is not perfect, as

we can see in Figure 3.2. The dashed curves indicate transitions between regions of

optimality for p = (0:58; 0:12; 0:11; 0:1; 0:09), regions marked (1) LX = f1; 2; 3; 4; 4g,

(2) LX = f1; 3; 3; 3; 3g, (3) LX = f2; 2; 2; 3; 3g, (4) LX = f4; 4; 3; 2; 1g, and (5) LX =

f3; 3; 2; 2; 2g. The dotted lines indicate the (+1) asymptotic behavior of the limits

3.1. MOTIVATION, METHOD, AND PROPERTIES 55

��������������
��������������
��������������
��������������

���
���
���

���
���
���

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

 b

d

(1)
(5)

(4)

(3)

(1)

(2)

(3)

�1
�1 0

0

Figure 3.2: Regions of optimality in parameter space for minimal DABR coding,
p = (0:58; 0:12; 0:11; 0:1; 0:09)

between regions. Note that b+d+1 = 0 divides nonincreasing length ensembles from

nondecreasing.

For any b = 0 or d = 0, ! = 1, and the ideal length is the same as that of linear

coding, � lg pi. This should be expected due to the Hu�man coding line (d = 0) and

symmetry. A similar result, noted by Nath, requires the following de�nition:

De�nition 16 A penalty that is quasilinear with a weight function | as in equation

(3.10) | is translative if the following property holds for functions f and ', distribu-

tion p, and lengths of the form li: f
�1f
P

i '(pi)f(li + 1)g = 1+ f�1f
P

i '(pi)f(li)g.

Nath found that the penalty class we call dth exponential redundancy | those of

DABR form with b = 0 | contain the only translative penalties that are quasilinear

with a weight function and for which the real-valued and integer-valued solutions

corresponded if and only if the input was dyadic.

56 CHAPTER 3. REDUNDANCY PENALTIES

Using the above equation and the Shannon code analogue, dlzi e, we can �nd bounds

for the optimal DABR when b � �1, d � �1 and b + d � �1:

�bH!(p) � R0b;d(L�X) < �bH!(p) + 1 (3.18)

�b(H!(p)�H�(p)) � Rb;d(L�X) < �b(H!(p)�H�(p)) + 1 (3.19)

�(bH!(p) +H1+�d(p)) � R
b;d
0 (L�X) < �(bH!(p) +H1+�d(p)) + 1 (3.20)

where we recall � = 1
1+b

and ! = 1+b+d
(1+b)(1+d)

. As before, equality holds i� the ideal

solution LzX has all integer lengths. For b = +1, (3.18) reduces to (2.21) | with the

linear (Shannon) case as a special case | and for b = 0, (3.20) reduces to

H1+d(p) � R
0;d
0 (L�X) < H1+d(p) + 1; (3.21)

a result of Nath in [76], which may also be stated as

0 � R00;d(L�X) < 1: (3.22)

Equation (3.22) can be restated in terms of a function proposed by R�enyi, one

he called the gain of information of order � but that we call the R�enyi divergence.

If we substitute = 1 + d and q = 2�LX (the probability vector for which the ith

probability is 2�li), then

D(p k q) ,
1

�1 lg
�P

k

p

k

q
�1

k

�
= 1

d
lg
P

i p
1+d
i 2dli

= R00;d(LX)

(3.23)

so 0 � D1+d(p k 2�L
�
X) < 1. This is not surprising given the relationship between

divergence and Hu�man coding noted by Longo and Galasso in [65]. As with the

previous cases, equality holds i� the ideal solution LzX has all integer lengths.

There are yet more ways of viewing these redundancy, length, and entropy prop-

erties that have desirable analytic properties the above do not [5,23]. However, such

measurements have bijective mappings with the above and do not alter the optimal

3.2. MINIMIZING MAXIMAL POINTWISE REDUNDANCY 57

solution space. Thus we do not discuss them here.

3.2 Minimizing maximal pointwise redundancy

Standard Hu�man coding minimizes average redundancy, as illustrated in (3.15);

Hu�man's original paper [43] is in fact titled \A Method for the Construction of

Minimum-Redundancy Codes." As average pointwise (0-)redundancy has been well-

understood for some time, Drmota and Szpankowski decided to explore the previously

overlooked minimization of maximal pointwise redundancy in [24]. (This, although

referred to as \minimax redundancy," is di�erent from the \minimax redundancy"

considered for unknown probability vectors, a problem we do not consider here.)

Note that the minimax redundancy problem is equivalent to minimizing dth ex-

ponential redundancy as d! +1:

lim
d!+1

1

d
lgEp[2

dr0(X)] = lim
d!+1

�
rmax +

1

d
lgPXfr0(X) = rmaxg+O

�
1

d2d

��
(3.24)

= rmax (3.25)

where rmax , maxi r0(i). Thus, considering d 2 [0;+1], dth exponential redundancy

is a subproblem with a parameter that varies solution values between minimizing

average redundancy (Hu�man coding) and minimizing maximum redundancy; such a

range of problems and solutions was sought by Drmota and Szpankowski. This range

was previously derived axiomatically by Nath as noted in Section 3.1.3. The version

of the minimal DABR coding solution applying to this subproblem was found shortly

thereafter in [78], although not generalized to b 6= 0, as with the previous section, or

to d = +1, the focus of this section.

In this section, we �rst summarize the algorithm proposed in [24] to �nd a

(nonunique) code with minimum maximum pointwise redundancy. We then �nd an

improvement based on minimal DABR Hu�man coding by �nding a value dmm 2 R

such that (3.13) is optimized for all d � dmm, and thus for d! +1. The shaded re-

gion in Figure 3.3 illustrates the range of d values which correspond to problems that

58 CHAPTER 3. REDUNDANCY PENALTIES

����
����
����
����

dmm 1234: : :1 0

Figure 3.3: Range of d | ordered by 1
1+d

| with [dmm;+1] shaded

such a solution would be guaranteed to minimize. Finally, we will propose alternative

algorithms to �nd minimax redundancy codes, algorithms that are more eÆcient than

either the Drmota and Szpankowski algorithm or the algorithm that �nds dmm.

3.2.1 Minimax redundancy as a generalized Shannon code

De�nition 17 A generalized Shannon code is a pre�x-free code for which, 8 i 2 X ;

blyi (0;p)c � li � dlyi (0;p)e. (Recall l
y
i (0;p) = � lg pi.)

Let hxi denote the fractional part of x, i.e., hxi , x � bxc. Now let ftig be a

permutation of f1; 2; : : : ; ng such that 8 i < j; hlyti(0;p)i � hlytj (0;p)i (n = jX j). Let

j� be the maximal j such that

tj�1X
i=1

pi2
hlyti (0;p)i +

1

2

nX
i=tj

pi2
hlyti (0;p)i � 1; (3.26)

that is, the Kraft inequality holds for the following generalized Shannon length en-

semble:

li =

(
blytj (0;p)c; j < j�

dlytj (0;p)e; j � j�
(3.27)

Then 8 LX ; R0;+1
p

(LX) � h1� l
y
tj�
(0;p)i, i.e., the code presented in (3.27) achieves

minimax redundancy. A proof and a practical O(n logn) algorithm may be found

in [24].

This code, however, is in no sense unique in minimizing maximal redundancy. It

may be one of many optimal codes, as decrementing a value of li may not necessarily

violate the Kraft inequality. In addition, if there is more than one codeword with

hlyt (0;p)i = hlytj� (0;p)i, a problem arises; because there is no method speci�ed to

3.2. MINIMIZING MAXIMAL POINTWISE REDUNDANCY 59

break ties, the algorithm does not uniquely determine which of these items have

li = blyi (0;p)c and which have li = dlyi (0;p)e.

It is therefore instructive to �rst make a minor modi�cation to the algorithm

proposed in [24] by forcing codewords with hlyt (0;p)i = hlytj� (0;p)i to be of identical

redundancy | if there are no ties, this is the same as the code previously presented.

The redundancy at all these points is the maximal possible among optimal codes

in order to satisfy both the Kraft inequality and the previous assertion. Minimax

redundancy is identical for the result of this modi�ed algorithm, which chooses j� to

be the maximal j such that (3.26) holds and hlytj (0;p)i 6= hlytj�1
(0;p)i. If the maximum

redundancy is rmax, then 0 � rmax < 1 and 8 i 2 X ; r0(i) 2 (rmax � 1; rmax], a unit

interval about 0. The modi�cation thus, in addition to making the algorithm invariant

to permutation of input, insures the in�mum point in this interval is not a minimum.

Lengthening any codeword increases pointwise redundancy by one and thus results

in the value being outside this interval, strictly increasing the maximal redundancy.

Thus, in some sense, this generalized Shannon code is the \worst" minimax redun-

dancy code, as no value of li is greater in any optimal code than the corresponding

one in this code.

3.2.2 Minimax redundancy as minimal DABR

We now present an idealization of how to improve upon the above \worst" code.

Due to its complexity, we do not propose it as a practical algorithm, but using it we

may �nd the aforementioned dmm for which the codes with optimal dth exponential

redundancy are the same as those with minimax redundancy, the dmm illustrated by

Figure 3.3. Such a dmm would reduce minimax redundancy to minimal dmm-average

0-redundancy. The resulting code would not only optimize the maximal redundancy,

but lesser-order terms of equation (3.24) as well, resulting in a full tree that could

be found with an eÆcient Hu�man-like algorithm. A more eÆcient algorithm for the

identical code is introduced in the next section, but this approach aids understanding

of the problem.

First order a queue by the value of r0(i) = li� l
y
i (0;p) from the largest to smallest

60 CHAPTER 3. REDUNDANCY PENALTIES

value as follows: Begin with the results of the above modi�ed generalized Shannon

construction. Then insert items starting with mtj� and continuing in order until mtn ,

then restarting at mt1 and continuing until mtj��1
.

Denote the items in the queue Q and let �Q , XnQ, the set of values known to

be optimal, initially the null set. Let qi denote (the index for) the ith element of the

queue, and let ni denote (the index for) the ith element removed from the queue.

The idealized approach is �rst to �nd the expression for the dth exponential re-

dundancy, then to decrement the lengths corresponding to the largest terms that can

be decremented. We reorder and then repeat until the Kraft inequality is satis�ed

and we can make no more improvement. If we can �nd a value of dmm such that

solving (3.13) for any d � dmm yields an identical result, we may use minimal DABR

Hu�man coding as an equivalent method.

Let min+i;j i;j denote the minimum strictly positive value of i;j. Assign Æp ,

min+i;jhl
y
i (0;p) � lyj(0;p)i. Now let dmm = 1

Æp
lg 2

pn
> 1. Suppose d � dmm, and

suppose the following is invariant in the algorithm: Each item not in the queue is

known to be at the proper value for the optimal li = l�i , and each item in the queue

is known to have value li � l�i . Note that, since �Q = ; initially, this is true after

the modi�ed algorithm previously speci�ed, so we need only preserve this invariant

property. Let the optimal subset O , fqi j hl
y
i (0;p)i = hly1(0;p)ig � Q, which, unless

there are ties in hlyi (0;p)i, should be just fq1g. Let E �Q ,
P

ni2 �Q pi2
dr0(i). Then we

have

Ep[2
dr0(X)] =

X
qo2O

pqo2
d[lqo�lyqo (0;p)] +

X
qi2QnO

pi2
d[lqi�l

y
qi
(0;p)] + E �Q: (3.28)

Since members of �Q are known to have optimal values, the only way in which we can

improve upon these codeword lengths is to shorten other values. If it is impossible to

shorten the length of certain codewords and still satisfy the Kraft inequality, we may

remove them from the queue and retain the invariant assumptions as follows.

We may �rst choose between decrementing lengths in O and altering other lengths

in the queue, assuming there are any. Either way, we decrease the value in (3.28).

Note that the contribution of O is the �rst term,
P

qo2O pqo2
d[lqo�lyqo(0;p)], while the

3.2. MINIMIZING MAXIMAL POINTWISE REDUNDANCY 61

contribution of other queue members is the second term,
P

qi2QnO pi2
d[lqi�l

y
qi
(0;p)]. If

we can show that (3.28) is reduced more by decrementing (by 1) any of lqo (where

qo may be any member of O = fq1; : : : ; qjOjg) than by eliminating the second term

altogether (since it is greater than 0 for any valid solution), we will have shown that

it is optimal to decrement values of lqo before considering values in QnO:

X
qi2QnO

pi2
d[lqi�l

y
qi
(0;p)] < 2

d[lqo�+1
�lyqo�+1

(0;p)]
(3.29)

�
2d[lqo�l

y
qo(0;p)]

2dÆp
8 qo 2 O (3.30)

�
pn

2
2d[lqo�l

y
qo(0;p)] 8 qo 2 O (3.31)

< pnf2
d[lqo�lyqo(0;p)] � 2d[lqo�1�l

y
qo(0;p)]g 8 qo 2 O (3.32)

< pqo2
d[lqo�lyqo(0;p)] � pqo2

d[lqo�1�lyqo(0;p)] 8 qo 2 O: (3.33)

Since lqo � lyqo(0;p) = lq1 � lyq1(0;p) 8 o 2 O, the above inequalities do not change

with o. Expectation does not exceed maximum, yielding (3.29). Because Æp is the

minimum di�erence between values of li � lyi (0;p) and lj � lyj(0;p), (3.30) holds.

Because d � dmm, (3.31) holds, d � dmm > 1 yields (3.32), and pn < pqo obtains

(3.33).

Thus, if we obey the invariants, it is optimal to decrement the tied �rst terms

in the queue before proceeding. These values remain tied for any value of d � dmm,

so any such algorithm for �nite d optimally resolves the ties. After decrementing,

if we return the member to the end of the queue, order is preserved, as are the

aforementioned invariants. We may thus continue until the queue is empty and the

Kraft inequality is satis�ed with equality.

The problem and thus result is identical for any d � dmm = Æ�1
p
(1� lg pn). Choose

a parameter ~d � dmm for ease of computation, e.g., ~d = 2dlg dmme. Thus, if we �nd an

optimal ~dth exponential Hu�man code for weights w0; ~d
i = p1+

~d
i , it is a minimax code

that, unlike the generalized Shannon code, satis�es the Kraft inequality with equality.

This is easily extended to other values of b (for which Æp = min+i;jhl
y
i (b;p)� l

y
j(b;p)i).

62 CHAPTER 3. REDUNDANCY PENALTIES

Note however that this algorithm for minimax redundancy is not linear time given

sorted pi's as is the case for �nite d. Finding dmm requires �nding min+i;jhl
y
i (b;p) �

l
y
j(b;p)i, which may be done via sorting on hlyi (b;p)i and keeping track of minimal

di�erence. This takes �(n logn) time. In addition, calculating w0; ~d
i = p1+

~d
i may vary

with ~d, although, with constant time multiplication, it should be �(log log p�1
n

Æp
). Thus

the total algorithm is �(n[logn + log 1
Æp
+ log log 1

pn
]) in time and linear in space.

Also, in spite of the multiple criteria this algorithm optimizes, it does not, in fact,

return a unique solution in every instance. Only a secondary criterion, such as that

of a minimal code, could resolve ties. As previously discussed, bottom-merging �nds

the minimum code among optimal codes. We give an example of an optimal code

after presenting a more eÆcient algorithm.

3.2.3 Linear time methods for minimax redundancy

Although the above is useful in understanding a context for minimax redundancy

coding, linear time algorithms may also be developed. By keeping dmm as a variable,

we may arrive at an algebraic version of the above algorithm. To do this with a

Hu�man algorithm, we have to keep track of only the �rst and second order terms,

as ties between these pairs of terms can occur only when all terms are tied, this due

to the manner in which the Hu�man procedure works. We explain why later; �rst,

we present the algorithm.

The aforementioned �rst and second order terms are w0
i , limd!+1[wi(d)](d

�1) and

w00
i , limd!+1[wi(d)]�1 � [w0

i]
d, respectively, where leaf nodes have wi(d) = p

1+b+d
1+b

i , as

previously stated. One may think of w0
i as representing an invertible function of

maximal b-redundancy, w0
i =

�Pn
j=1 p

1

1+b

j

��1
� 2maxi rb(i), where rb(i) = li � lyi (b;p)

uses the depth of item i in its current tree as the value li at any given point of the

algorithm. Note that only rb(i) is variable; the denominator term is a result of not

normalizing the weights at the start of the algorithm. Similarly, w00
i represents the

probability of maximal b-redundancy PX frb(X) = maxj rb(j)g.

The algorithm does not �nd a value of dmm such that this is also the solution

3.2. MINIMIZING MAXIMAL POINTWISE REDUNDANCY 63

to dth exponential redundancy (or DABR) coding for d 2 [dmm;+1), as the previ-

ous numeric algorithm does. However, the algebraic algorithm is linear time given

sorted weights, faster than either the previously considered algorithm or that given

by Drmota and Szpankowski in [24].

To implement this algorithm, we let w0
i = p

1

1+b

i and w00
i = pi for the initial case.

In comparing items j and k, we consider them as lexicographically ordered pairs |

e.g., wj = (w0
j; w

00
j) | so that wj � wk if and only if either w0

j > w0
k or if w

0
j = w0

k

and w00
j � w00

k, as in [53]. In combining items j and k (where wj � wk as described),

the new item will have ~w0
j = 2w0

j = 2 � max(w0
j; w

0
k). If w0

j > w0
k, then ~w00

j = w00
j .

Otherwise, ~w00
j = w00

j + w00
k. That is,

~wj =

(
(2w0

j; w
00
j) if w0

j > w0
k

(2w0
j; w

00
j + w00

k) otherwise
(3.34)

The reasons for this are easily seen if we view wi as the representation of maximal

redundancy and probability this maximal redundancy is achieved. Take the max-

imum and add 1 for the additional bit of the codeword, then, if the redundancies

are identical, add their probabilities; otherwise, take the probability of the maximal

redundancy.

This combining method is a Hu�man algebra, satisfying the properties introduced

by Knuth in [53]. The Hu�man combining criterion, shown by example in Figure 3.4,

results in the same process and yields the same results as for the variable case. The

remaining weight, (32
19
; 4
19
), indicates a maximum redundancy of lg 32

19
and a probability

of 4
19

that this redundancy is achieved.

We now show that ties in the w pairs imply ties in all terms of the expansion

presented in equation 3.41, or, equivalently, for all aforementioned d 2 [dmm;+1).

Theorem 7 If there is a tie in the above w pairs, there is a tie in all terms of the

corresponding d expansion.

Proof: Consider two tied pairs. Note that, in each,

w0
i � w00

i

1

1+b (3.35)

64 CHAPTER 3. REDUNDANCY PENALTIES

(4, 4)

(2, 2)

(8, 8)

(2, 2)

(3, 3)

(8, 8)

(4, 4)

(3, 3)

(4, 4) (4, 4)

(8, 8)

(8, 4) (8, 8)

(16, 4) (32, 4)1 1

2

2

3

3

3

3

3

4

8

li ci 19 � pi 19 �wimi

000

001

010

011

m1

m2

m3

m4

m5

Figure 3.4: Algebraic minimax redundancy coding, p = 1
19
� (8; 4; 3; 2; 2) (bottom-

merge)

4

3

2

8

2

8

4

4

3

8

4

8

16

8

321 1

2

2

2

33

4

4

4

8

li ci 19 � pi 19 �w0
imi

01

001

0000

0001

m1

m2

m3

m4

m5

Figure 3.5: Top-merge minimax redundancy coding, p = 1
19
� (8; 4; 3; 2; 2) (single

variable)

because this holds with equality in leaf nodes and the inequality is preserved in the

merge step, since 2 �max(a; b) � a + b � max(a; b) for a; b � 0. If inequality (3.35)

holds without equality, neither node can be a leaf node, and, due to ordering for the

combination step, their four children must be identically weighed. However, this fact

can be invoked inductively for either pair of children, also tied, and thus such a tree

could not be �nite. Therefore, tied pairs arise only in cases for which the inequality

holds with equality. Thus, they must be leaf nodes or nodes with two identically

weighted children. Inductively, this means the subtrees must be composed of leaf

nodes that are relatively dyadic, that is, are dyadic when multiplied by a nontrivial

common constant. Thus they are equal in all terms, which is what we set out to

show.

One can use bottom-merge or top-merge coding to assure that the results are

3.2. MINIMIZING MAXIMAL POINTWISE REDUNDANCY 65

deterministic. If one uses top-merge coding, note that we actually need not keep

track of the second variable, as in Figure 3.5, because order in both variables is

preserved by favoring combined items.

This variant is actually a special case of a Hu�man variation known as the tree-

height measure problem, not previously considered in the context of minimax re-

dundancy (or DABR) coding. This problem, discussed by Parker in [78], minimizes

the maximal value of vi + c � li given c > 0 and weight vector v. Instead of using

~vj = 2b(vj + vk) on the merge step of Hu�man coding, the Hu�man-like tree-height

measure algorithm uses ~vj = c+max(vj; vk). For the problem reduction, weights are

assigned according to

vi(b) =
1

1 + b
lg
pi

pn
; (3.36)

which is always nonnegative, and c = 1. Then this modi�ed Hu�man algorithm

minimizes

max
i
(vi(b) + c � li) = max

i

�
li +

1

1 + b
lg
pi

pn

�
(3.37)

= max
i

li +

1

1 + b
lg pi � lg

"X
j

pj
1

1+b

#!

+ lg

"X
j 6=n

pj
1

1+b

#
(3.38)

= max
i
rb(i) + lg

X
j 6=n

pj
1

1+b (3.39)

thus minimizing maximal pointwise b-redundancy with a code satisfying the Kraft

inequality with equality, also in linear time. The equivalence to the previous algorithm

is given by noting vi(b) = lgwi(b)� lgwn(b).

Due to ties, if we do not use top-merge coding, this may be one of many possible

optimal codes, including codes not optimal for the limit of dth exponential redun-

dancy. For example, consider p =
�

8
19
; 4
19
; 3
19
; 2
19
; 2
19

�
, as in Figures 3.4 and 3.5. For

66 CHAPTER 3. REDUNDANCY PENALTIES

dth exponential redundancy, LX = f1; 2; 3; 4; 4g and LX = f1; 3; 3; 3; 3g are both

optimal for d! +1, optimizing minimax redundancy, then probability of maximal

redundancy, then lower-order terms, as

Rb;d = 1
d
lg
P

i2X pi2
d(li�lyi) (3.40)

= maxi rb(i)+
1
d
lgPX frb(X) = maxj rb(j)g+

O
�

1
d2d

�
:

(3.41)

Each term in the expansion has a di�erent asymptotic complexity. As with minimum

variance Hu�man coding, each additional term further restricts the set of feasible

codes to those that satisfy the argmin for the term given the optimization of previous

terms. In the above example, all terms are minimized by both the aforementioned sets

of lengths. These two codes turn out to be optimal for dth exponential redundancy

for all d > �1. However, LX = f2; 2; 2; 3; 3g also minimizes maximal redundancy

and is in fact achieved by the bottom-merge version of the the tree-height measure

algorithm. Still, unlike in [24], the output always has a full code tree with all subtrees

also optimal and �nds a minimizing solution in linear time.

Thus we have linear time methods to �nd (possibly nonunique) solutions of DABR

(equation (3.3)) for all values of b�d 2 (�1;+1]�(�1;+1]. For b = �1 or d = �1,

we know the unary solution is optimal, and for b = d = +1, we know the at solution

is optimal, neither case dependent on the actual descending probability values.

The previously explored relations allow similar extensions to alphabetic codes

(alphabetic search trees), obtaining optimal codes via modi�cations of the Hu-Tucker

algorithm [39,42]. For nonnegative exponent d � 0, this is a direct result of [39]. The

d < 0 case is left as an exercise.

Chapter 4

Generalized quasilinear convex

penalties

In this chapter, we generalize an eÆcient algorithm for �nding length-limited codes

to an eÆcient algorithm for �nding optimal codes for any penalty of a class we call

generalized quasilinear convex penalties. These include the convex quasilinear class

proposed by Campbell in [15]. This algorithm may be performed using O(n2 logn)

time (which in most cases may be reduced to O(n2) or further), and, in the Campbell

case, linear space. Also, for Campbell's problems, we �nd bounds for optimal codes

analogous to those in previous cases.

4.1 Introduction and motivation

Now consider the more general case proposed in equation (2.1):

De�nition 18 Suppose f(li; pi) : N � [0; 1] ! R [f+1g is monotonically increasing

and convex with respect to li 2 N . The generalized quasilinear convex coding problem

is that of minimizing F (LX ;p) =
P

i f(li; pi) over LX , subject to the Kraft inequality

and the integer constraint.

67

68 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

This problem is the one we solve here, thus solving the convex Campbell subproblem

case (2.2) as well. Note that the generalized quasilinear problem is in fact quite gen-

eral, covering problems F8 through F13 in Table 1.1. Heretofore a solution to either

this case or Campbell convex case was only known for certain speci�c instances of

these problems. The most general related solution is the one explored in Section 2.5,

which uses F merely as a secondary criterion, to break ties among multiple opti-

mal solutions in the linear (or exponential) case. This technique uses bottom-merge

Hu�man coding, �rst explored in [84].

Coding for F as a primary criterion has not previously been solved in much gen-

erality. The speci�c Campbell case of f(li) = �li + �l2i , for given �; � � 0 had been

previously considered by Larmore in [58], which presented an O(n3) time and space

algorithm. A version of the algorithm we present can be applied to improve this result

to O(n2) time and linear space.

It is also worthwhile to note that this result of [58] is used in order to construct

a polynomial time algorithm for �nding a code minimizing a complex nonquasilinear

function corresponding to the expected waiting time between information request

and receipt, the problem formulated as equation F14 of Table 1.1. Our results thus

improve this algorithm. In fact, they may be used to �nd eÆcient polynomial time

algorithms to minimize any of a wide variety of functions, based on the Convex Hull

theorem of [58]. We touch upon this in Section 4.8.

We assume, without loss of generality, that the domain of f may be extended to

fN [f0g; [0; 1]g and that f(0; pi) = 0. If this is not the case, we may replace f with

~f(li; pi) =

(
f(li; pi)� 2f(1; pi) + f(2; pi); li > 0

f(li; pi) = 0; li = 0
(4.1)

retaining convexity and monotonicity.

4.2. BOUNDS 69

4.2 Bounds

Before attempting to solve this problem, let us �nd bounds for the optimal solution

in the quasilinear case, not necessarily assuming convexity. Note that, as in (2.17{

2.22), if we extend the domain of f(l; p) to a monotonically increasing function on

fR+ ; [0; 1]g, we may bound the solution value as follows. Because the optimal so-

lution to the problem without the integer constraint must have at most the same

minimum value, this optimal solution provides a lower bound. We again denote the

ith parameter of this solution lyi . The Shannon-like code li = dlyi e is achievable and

thus yields an upper bound. Note further that the above upper bound is strictly less

than
P

i f(l
y
i + 1; pi) due to f monotonically increasing in the �rst variable. Thus

X
i

f(lyi ; pi) �
X
i

f(l�i ; pi) �
X
i

f(dlyie; pi) <
X
i

f(lyi + 1; pi) (4.2)

where each l�i , as before, corresponds to the length of the ith codeword in an optimal

code. These bounds are analogous to Campbell's interpretation of R�enyi entropy and

may be useful if the real-valued problem can be solved analytically.

Continuous quasilinear problems (2.3) allow one to de�ne f -entropy via the left-

hand side of (4.2). Campbell in [15] de�ned:

H(p; f) , inf
P
i 2
�li�1;

li2R

f�1
"X

i

pif(li)

#
: (4.3)

This is how he derived R�enyi entropy, as in equation (2.17).

The translative property noted in Section 3.1.3 is a speci�c case of the following

property for general penalty F : Rn � �0
n ! R, described by Acz�el [6], among others:

De�nition 19 F (LX ;p) is translatory if, for all c 2 R+ , F (LX+c;p) = F (LX ;p)+c,

where LX + c denotes adding c to each item li in LX .

If F is increasing with each li, then there exists F -entropy:

H(p; F) , inf
P
i 2
�li�1;

li2R

F (LX ;p); (4.4)

70 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

and, for minimizing input L�X , if F is translatory, then, due to equation (4.2):

H(p; F) � F (L�X ;p) < H(p; F) + 1: (4.5)

We may broaden the collection of penalty functions satisfying this penalty by

weakening the condition of De�nition 19. Replacing the equality with an inequality,

we introduce the concept of a subtranslatory penalty:

De�nition 20 If F (LX + c;p) � F (LX ;p) + c for all c 2 R
+ , F (LX ;p) may be said

to be subtranslatory.

Equation (4.5) still holds for subtranslatory penalties.

If F is continuous quasilinear, as Campbell considered, and if the associated f

obeys certain regularity conditions, then we can introduce a necessary and suÆcient

condition for F to be subtranslatory.

Consider the invertible function f : R+ ! R
+ , and assume it is real analytic

over a relevant compact interval. We may choose this interval to be, for example,

C = [Æ; 1=Æ] for some Æ > 0. We may take Æ ! 0 to show the following argument to

be valid over all R+ . We assume f�1 is also real analytic (with respect to interval

f(C)). Thus all derivatives of the function and its inverse are bounded. Without

loss of generality, we also assume f 0 = df
dx

is positive; if it were negative, we could

replace f(x) with ~f(x) = fmax � f(x) where fmax = maxx2C f(x) < +1, and the

same penalty F would result.

Suppose
P

i pif
0(li) � f 0 [f�1(

P
i pif(li))]. We wish to show this to be equiva-

lent to being subtranslatory. Note that the right-hand side of the inequality may

also be written f 0 [F (LX ;p)], so this may be stated, \The average derivative at the

codeword length values is at most the derivative of f at the value of the penalty

function for those length values." The inequality is equivalent to [
P

i pif
0(li)] �

(f�1)0 [
P

i pif(li)] � 1. The linear and exponential penalties satisfy the inequality

with equality. Also, moment functions (
P

i pil
a
i)

1=a satisfy the inequality for a � 1,

since
�P

i pil
a�1
i

� 1

a�1 � [
P

i pil
a
i]

1

a leads to a �
�P

i pil
a�1
i

�
� a �

�P
i pil

a�1
i

�a�1

a , which

is
P

i pif
0(li) � f 0 [f�1(

P
i pif(li))], the inequality we wanted.

4.2. BOUNDS 71

Theorem 8 Given real analytic f and f�1,

X
i

pif
0(li) � f 0

(
f�1

"X
i

pif(li)

#)
(4.6)

if and only if penalty F is subtranslatory.

Proof: Let � > 0:

f�1
"X

i

pif(li)

#
+ � (4.7)

� f�1
"X

i

pif(li)

#
+ � �

"X
i

pif
0(li)

#
� (f�1)0

"X
i

pif(li)

#
(4.8)

= f�1
"X

i

pif(li) + � �
X
i

pif
0(li)

#
+O(�2) (4.9)

= f�1
"X

i

pif(li + �) +O(�2)

#
+O(�2) (4.10)

= f�1
"X

i

pif(li + �)

#
+O(�2): (4.11)

Therefore,

f�1
"X

i

pif(li + c)

#
� � + f�1

"X
i

pif(li + c� �)

#
+O(�2) (4.12)

� � � � (4.13)

� �
jc
�

k
+ f�1

"X
i

pif(li) + c� �
jc
�

k#
+O(�) (4.14)

� c+ f�1
"X

i

pif(li)

#
+O(�) (4.15)

so that, taking �! 0, f�1[
P

i pif(li+c)] � c+f�1[
P

i pif(li)]. Thus, knowledge that

f 0[f�1(
P

i pif
0(li))] �

P
i pif

0(li) is suÆcient to know F is subtranslatory.

72 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

Given the same regularity conditions we initially assumed, equations (4.7{4.11)

reverse, resulting in the converse.

Thus, for such f , we have the bounds of equation (4.5) for the optimum value of

the penalty function. We already saw examples relevant for this theorem. Another

example, previously mentioned, is the Campbell case of f(x) = �x+�x2, for �; � � 0,

which we may show to also be subtranslatory. In this case, we have

f 0(x) = � + 2�x (4.16)

f�1(x) =

s�
�

2�

�2

�
x

�
�

�

2�
(4.17)

F (LX ;p) =

vuut� �

2�

�2

+
X
i

pi

�
�

�
li + l2i

�
�

�

2�
: (4.18)

We may achieve the desired inequality as follows:

X
i

pil
2
i �

 X
i

pili

!2

(4.19)

�2 + 4��
X
i

pili + 4�2
X
i

pil
2
i � �2 + 4��

X
i

pili + 4�2

 X
i

pili

!2

(4.20)

s
�2 + 4�

X
i

pi(�li + �l2i) �
X
i

pi(� + 2�li) (4.21)

f 0[F (LX ;p)] �
X
i

pif
0(li) (4.22)

We thus have an important property for cases of interest, even those which are

not convex. We will �nd that for the generalized quasilinear convex coding problem,

an eÆcient coding algorithm may be used to �nd the optimal integer solution. Before

we solve this or any special cases, however, let us discuss a related problem, the Coin

Collector's problem.

4.3. THE COIN COLLECTOR'S PROBLEM 73

4.3 The Coin Collector's problem

4.3.1 Problem statement and properties

Recall that 2Z denotes the set of all integer powers of two. The Coin Collector's

problem of size m considers m \coins" with width �i 2 2Z; one can think of width

as coin face value, e.g., �i =
1
4
for a quarter. Each coin also has weight �i 2 R. The

�nal problem parameter is total width, denoted t. The problem is then:

Minimize fB�S(m)g
P

i2B �i

subject to
P

i2B �i = t;
(4.23)

where S(m) , f1; : : : ; mg.

We thus wish to �t exactly total width t coins in a minimum weight \container."

This problem is an input-restricted case of the knapsack problem, which, in general,

is NP-hard [32,66]. For the knapsack problem, then, no polynomial time algorithms

are known, only pseudo-polynomial ones [32]. However, we present a linear time

solution to (4.23), �rst proposed in [59], called the Package-Merge Algorithm.

We illustrate and prove a slightly simpli�ed version of the version of the algorithm

introduced in [59]. In our notation, we use i 2 S(m) to denote both the index of a

coin and the coin itself, and I to represent the m items along with their weights and

widths. The optimal solution of the problem is a function of total width t and items

I. We therefore denote this solution as CC(I; t) (read, \the [optimal] coin collection

for I and t").

Note that we assume the solution exists but may not be unique. In the case of

nonunique solutions, tie resolution for argmin 's may for now be random or determin-

istic; we expand further on this later. (A modi�ed version of the algorithm considers

the case where a solution may not exist, and another modi�cation allows for the

equality in (4.23) to be replaced by an inequality, but neither is needed here.) Due

to solution existence, t = tn=td for some unique odd tn 2 Z and td 2 2Z. (For the

purposes of this exposition, the \numerator" and \denominator" refer to the unique

pair of an odd integer and a power of two, respectively, which, divided, form t. This

74 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

power of two may be noninteger.)

4.3.2 Package-Merge algorithm and proof of correctness

Algorithm variables

At any point in the algorithm, assume the following de�nitions:

Remainder ts , the unique td 2 2Z such that t
td
is an odd integer

Minimum width �� , mini2I �i (note �� 2 2Z)

Small width set I� , fi j �i = ��g (by de�nition, jI�j � 1)

\First" item i� , argmini2I� �i

\second" item i�� ,

(
argmini2I�nfi�g �i; jI�j > 1

� (a null value); jI�j = 1:

Then the following is a recursive description of the algorithm:

Recursive Package-Merge Procedure [59]

Basis. t = 0. CC(I; t) is the empty set.

Case 1. �� = ts and I 6= ;: CC(I; t) = CC(Infi�g; t� ��) [fi�g.

Case 2a. �� < ts, I 6= ; and jI�j = 1: CC(I; t) = CC(Infi�g; t).

Case 2b. �� < ts, I 6= ; and jI�j > 1: Let i0 be a new item with weight

�i0 = �i�+�i�� and width �i0 = �i�+�i�� = 2��. This new item is thus a combined item,

or package, formed by combining items i� and i��. Let S 0 = CC(Infi�; i��g[fi0g) (the

optimization of the packaged version). If i0 2 S 0, then CC(I; t) = S 0nfi0g [fi�; i��g;

otherwise, CC(I; t) = S 0.

Proof: We show that the Package-Merge algorithm produces an optimal solution

via induction on the depth of the recursion. The basis is trivially correct, and each

inductive case reduces the number of items by one. The inductive hypothesis on

ts � 0 and I 6= ; is that the algorithm is correct for any problem instance that

requires fewer recursive calls than instance (I; t).

If �� > ts > 0, or if I = ; and t 6= 0, then there is no solution to the problem,

contrary to our assumption. Thus all feasible cases are covered by those given in

the algorithm. Case 1 indicates that the solution must contain an odd number of

elements of width ��. These must include the minimum weight item in I�, since

4.4. OVERALL ALGORITHM 75

otherwise we could substitute one of the items with this \�rst" item and achieve

improvement. Cases 2 indicates that the solution must contain an even number of

elements of width ��. If this number is 0, neither i� nor i�� is in the solution. If it is

not, then they both are. If i�� = �, the number is 0, and we have Case 2a. If not, we

may \package" the items, considering the replaced package as one item, as in Case

2b. Thus the inductive hypothesis holds and the algorithm is correct.

Figure 4.1 presents a simple example of this algorithm at work, �nding minimum

total weight items of total width t = 3 (or, in binary, 11b). In the �gure, item

width represents numeric width and item area represents numeric weight. First, the

minimum weight item with width �i� = ts = 1 is put into the solution set. Then,

the remaining minimum width items are packaged into a merged item of width 2

(10b). Finally, the minimum weight item/package with width �i� = ts = 2 is added

to complete the solution set, which is now of weight 6. The remaining packaged item

is left out in this case; when the algorithm is used for coding, several items may be

left out of the optimal set.

An iterative linear time implementation appears in [59].

4.4 Overall algorithm

We now �nd a reduction from the generalized quasilinear convex coding problem

to the Coin Collector's problem. We �rst assume bounds on the maximum code

length of possible solutions. This may be the maximum unary codeword length of

n� 1. Alternatively, it may be explicit in the de�nition of the problem. Consider the

length-limited coding problem of [59],

f(li; pi) =

(
pili; li � lmax

+1; li > lmax
(4.24)

for some �xed lmax � dlgne. This is upper bounded by lmax. A third possibility

is that maximum length may be implicit in some property of the set of optimal

solutions [13, 50]; we explore this in Section 4.6.

Therefore we may restrict ourselves to codes with n codewords, none of which has

76 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

t = 0 = 0b

t = 2 = 10b

t = 3 = 11b

� = 1

� = 1

� = 1� = 2� = 4

� = 5

� = 5

� = 5

� = 6

� = 6

� = 1� = 1� = 1

� = 2

� = 2� = 2

� = 2

P
� = 6

Figure 4.1: A simple example of the Package-Merge algorithm

greater length than lmax for some dlg ne � lmax � n � 1. With this we may now

introduce nodeset notation as an alternative method of code representation to binary

code trees:

De�nition 21 A node is an ordered pair of integers (i; l) such that i 2 f1; : : : ; ng

and l 2 f1; : : : ; lmaxg. Call the set of all nlmax possible nodes | usually arranged in a

grid | I (see Figures 4.2 and 4.3). The set of nodes, or nodeset, corresponding to a

codeword ci (length li) is the set of the �rst li nodes of column i, that is, nodeset(ci) =

nodeset(li) , f(j; l) j j = i; l 2 f1; : : : ; ligg � I. The nodeset corresponding to length

ensemble LX is nodeset(LX) ,
S
i nodeset(li), also � I; this corresponds to a set of n

codewords, a code. If node (i; l) 2 I then we say it has width �(i; l) , 2�l and weight

�(i; l) , f(l; pi)� f(l � 1; pi), as in Figure 4.2.

4.4. OVERALL ALGORITHM 77

l (level)

i (item)

�(1; 1) = p1 �(2; 1) = p2 �(3; 1) = p3 �(4; 1) = p4

�(1; 2) = 3p1 �(2; 2) = 3p2 �(3; 2) = 3p3 �(4; 2) = 3p4

�(1; 3) = 5p1 �(2; 3) = 5p2 �(3; 3) = 5p3 �(4; 3) = 5p4

�(1; 1) = 1

2
�(2; 1) = 1

2
�(3; 1) = 1

2
�(4; 1) = 1

2

�(1; 2) = 1

4
�(2; 2) = 1

4
�(3; 2) = 1

4
�(4; 2) = 1

4

�(1; 3) = 1

8
�(2; 3) = 1

8
�(3; 3) = 1

8
�(4; 3) = 1

8

1

1 2

2

3

3 4

Figure 4.2: The set of nodes I with widths (�(i; l)'s) and weights (�(i; l)'s) for f(l; p) =
pl2, n = 4, lmax = 3

If a subset N of all nodes I is a valid nodeset, then it is straightforward to �nd the

corresponding length ensemble and thus a code. Any optimal solution N of the Coin

Collector's problem for t = n� 1 on coins I = I is a nodeset for an optimal solution

of the coding problem. Thus we have a suitable method of solving the generalized

quasilinear convex penalty.

To show this reduction, de�ne �rst for any N = nodeset(LX):

�(N) ,

X
(i;l)2N

�(i; l) (4.25)

=
X
li2LX

1� 2�li (4.26)

= n�
X
li2LX

2�li (4.27)

which is in [n�1; n) for pre�x-free codes due to the Kraft inequality. Kraft is satis�ed

78 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

with equality on the left end of this interval. Also de�ne:

�(N) ,

X
(i;l)2N

�(i; l) (4.28)

=

nX
i=1

(
f(0; pi) +

liX
l=1

[f(l; pi)� f(l � 1; pi)]

)
(4.29)

=

nX
i=1

f(li; pi) (4.30)

= F (LX ;p) (4.31)

since f(0; pi) = 0 8 i 2 X . This establishes the parallel between the Coin Collector's

problem and this coding problem. To prove the reduction, we need the following

lemma:

Lemma 5 Suppose that N is a nodeset of width x2�l + r where x is an integer and

0 < r < 2�l. Then N has a subset R with width r.

Proof: As with the proof of correctness for the Package-Merge algorithm, use

induction on the cardinality of the set. The base case jN j = 1 is trivial since then

x = 0. Assume the lemma holds for all jN j < n, and suppose j ~N j = n. Let

i� = argmini2 ~N �i and k = mini2 ~N �i. We have k > l since 0 < r < 2�l. Then

r must be an integer multiple of 2�k. If r = 2�k, R = fi�g is a solution. Otherwise

let N 0 = ~Nnfi�g (so jN 0j = n� 1) and let R0 be the subset obtained from solving the

lemma for set N 0 of width r � 2�k. Then R = R0 [fi�g.

We may now prove the main theorem:

Theorem 9 Any N � I that is a solution of the Coin Collector's problem for t =

�(N) = n � 1 has a corresponding LNX such that N = nodeset(LNX) and �(N) =

minLX F (LX ;p).

Proof: By monotonicity, any optimal solution satis�es the Kraft inequality with

equality. Thus all optimal length ensemble nodesets have �(nodeset(LX)) = n � 1.

4.4. OVERALL ALGORITHM 79

Suppose N is a solution to the Coin Collector's problem but is not a valid nodeset of

a length ensemble. Then there exists an (i; l) 2 I with l > 1 such that (i; l) 2 N and

(i; l � 1) 2 InN . Let R0 = N [f(i; l � 1)gnf(i; l)g. Then �(R0) = n � 1 + 2�l and,

due to convexity, �(R0) � F (LNX ;p). Thus, using Lemma 5, there exists an R � R0

such that �(R) = n � 1 and �(R) < �(R0) � F (LNX ;p). However, since we assumed

N to be an optimal solution of the Coin Collector's problem, this is a contradiction,

and thus any solution corresponds to an (optimal) length ensemble.

Thus we have an algorithm that �nds an optimal code in O(nlmax) time for any

f(li; pi) that is monotonically increasing and convex. (Note that the generality of this

algorithm makes this extendable to problems of the form
P

i fi(li; pi) for n di�erent

functions fi. This might be applicable if we desire a nonlinear weighting for codewords

in addition to and possibly independent of codeword length and probability.)

The complexity of the algorithm in terms of n alone depends on the structure of f

and p. To show how, we �rst need some de�nitions:

De�nition 22 The space of problems being considered is called a at class if, for any

solution LX ,
maxi li
lgn

< � for some known constant �. For example, the space of linear

Hu�man coding problems for pn �
1
2n

is a at class. (This may be shown using [13].)

De�nition 23 A problem is di�erentially monotonic in p if 8 l > 1; pi > pj)

[f(l; pi)� f(l � 1; pi)] > [f(l; pj)� f(l � 1; pj)] unless f(l � 1; pi) = +1.

The latter property implies f is continuous in p at all but a countable number of

points, but here we only consider cases in which it is continuous everywhere. With

the exception of the f for minimal DABR when b + d � �1, all f considered in

this paper are di�erentially monotonic and continuous in p, including all penalties of

expectation (those of the form Ep[f(l(X))]).

If the problem space considered is a at class, lmax is O(logn); it is O(n) in general.

Sorting items for the Package-Merge algorithm is O(n logn) if we are guaranteed that

li � lk 8 i < k, and O(nlmax logn) in other cases. Thus problem complexity for this

solution ranges from O(n log2 n) (at) to O(n2 logn) (others) with space requirement

O(n log2 n) (at) to O(n2) (others). In di�erentially monotonic cases, however, this

can be improved upon.

80 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

4.5 A linear space algorithm

Note that the resulting length ensemble need not have the property that if i < k, then

li � lk (the �rst property of Lemma 1). For example, if pi = pk, we are guaranteed

no particular inequality relation between li and lk. Also, even if all pi were distinct,

there are cases for which we would expect the inequality relation reversed from the

linear case. An example of this is f(li; pi) = p�1i 2li, which represents no practical

problem, although, if we exclude the domain constraints, it corresponds to (�1:5)-

average 1-redundancy, b = �1:5 and d = 1 in equation (3.3).

The problem space for the above algorithm is quite general, but we can improve

upon the algorithm by insisting that the problem be di�erentially monotonic and all

entries pi in p be distinct, a condition later relaxed. The resulting algorithm uses

only linear space. First we need a de�nition,

De�nition 24 A monotonic nodeset, N , is one with the following properties:

(i; l) 2 N) (i + 1; l) 2 N; for i < n; (4.32)

(i; l) 2 N) (i; l � 1) 2 N; for l > 1: (4.33)

An example of an optimal monotonic nodeset is the set of nodes enclosed by

the dashed line in Figure 4.3. Note that a nodeset is monotonic if and only if it

corresponds to a length ensemble with lengths sorted increasing order. Note too that

this order implies a unique tree with leaf nodes in this order, and thus a unique code.

We may thus refer to such trees and codes as monotonic as well. For example, tree

(c) of Figure 2.5 is monotonic while tree (a) and tree (b) are not.

Lemma 6 If a problem is di�erentially monotonic in p and monotonically increas-

ing and convex in li's, and if p has no repeated values, then N = CC(I; n � 1) is

monotonic.

Proof: The second property of monotonic nodesets (4.33) was proved in The-

orem 9. Suppose that we can �nd an N that violates the �rst property. Then

4.5. A LINEAR SPACE ALGORITHM 81

there exists j 6= k such that pj < pk and lj < lk for optimal codeword lengths LX

(N = nodeset(LX)). Consider L0X with lengths for items j and k interchanged. Then

F (L0X)� F (LX) =
X
i

f(l0i; pi)�
X
i

f(li; pi) (4.34)

= [f(lk; pj)� f(lj; pj)]� [f(lk; pk)� f(lj; pk)] (4.35)

=

lkX
l=lj+1

f[f(l; pj)� f(l � 1; pj)]� [f(l; pk)� f(l � 1; pk)]g (4.36)

< 0 (4.37)

where equation (4.37) is due to di�erential monotonicity. However, this implies that

F (LX) is not an optimal code, and thus we cannot have an optimal nodeset without

monotonicity unless values in p are repeated.

Taking advantage of this relation to trade o� a constant factor of time for drasti-

cally reduced space complexity has been done in [58] for the case of the length-limited

(linear) penalty of equation (4.24). We now extend this to cases monotonically in-

creasing and convex in li's and di�erentially monotonic in p.

At a given point in the Package-Merge algorithm for the coding problem, because

the algorithm operates one level at a time, fewer than 2n packages are kept in memory.

Each package may have several nodes, however, hence the space complexity of nlmax.

The idea of reducing space complexity is to keep only four attributes of each package

in memory instead of the full contents. In this manner, we retain enough information

to reconstruct the optimal nodeset in algorithmic postprocessing.

De�ne lmid , b lmax+1
2

c. Package attributes allow us to divide the problem into two

subproblems with total complexity not exceeding that of half the original problem.

Consider a package S. For S, we retain the attributes that follow:

1. Weight: �(S) ,
P

s2S �s

2. Width: �(S) ,
P

s2S �s

3. Midct: �(S) , jS \ Lmidj

82 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

l (level)

i (item)

� (width)

1

1

A B

C

D

N

2�1

2�lmid

2�lmax

lmid

nn�m

lmax

Figure 4.3: The set of nodes I, an optimal nodeset N , and disjoint subsets A, B, C,

D

4. Hiwidth: (S) ,
P

s2S\Lhi �s

where Lhi , f(i; l) j l > lmidg, Lmid , f(i; l) j l = lmidg, and Llo , f(i; l) j l < lmidg.

This retains enough information to complete the \�rst run" of the algorithm with

O(n) space. The result will be the package attributes for the optimal nodeset N .

Thus, at the end of this �rst run, we know the value for m = �(N), and we can

consider N as the disjoint union of four sets, shown in Figure 4.3:

1. A = nodes in N \ Llo with indices in [1; n�m],

2. B = nodes in N \ Llo with indices in [n�m+ 1; n],

3. C = nodes in N \ Lmid,

4. D = nodes in N \ Lhi.

Due to monotonicity of N , it is trivial that C = [n � m + 1; n] � flmidg and B =

[n�m+1; n]�[1; lmid�1]. Note then that �(C) = m2�lmid and �(B) = m[1�2�(lmid�1)].

Thus we need merely to recompute which nodes are in A and D.

Since D � Lhi, �(D) = (N) and �(A) = �(N) � �(B) � �(C) � �(D). Given

their respective widths, A is a minimal weight subset of [1; n�m]� [1; lmid � 1] and

4.5. A LINEAR SPACE ALGORITHM 83

D is a minimum weight subset of [n�m+ 1; n]� [lmid + 1; lmax]. The nodes at each

level of A and D may be found by recursive calls to the algorithm. In doing so, we

use only O(n) space. We now prove that the time complexity remains the same:

Theorem 10 The above recursive version of generalized quasilinear convex coding

has O(nlmax) time complexity.

Proof: To �nd the time complexity, set up the following recurrence relation: Let

�(n; l) be the worst case time to �nd the minimal weight subset N of [1; n]� [1; l] of

a given width t, assuming N is monotonic. Then there exist constants c1 and c2 such

that

�(n; l) � c1n; for l < 3; (4.38)

�(n; l) � c2nl + �(n(1); l(1)) + �(n(2); l(2)); for l � 3; (4.39)

where l(1) = lmid � 1 � b l
2
c, l(2) = l � l(1) � 1 � b l

2
c, and an adversary chooses

n(1) + n(2) = n. Note that �(n; l) = O(�(n; l)), where � is any function satisfying the

recurrence

�(n; l) � c1n; for l < 3; (4.40)

�(n; l) � c2nl + �

�
n(1);

l

2

�
+ �

�
n� n(1);

l

2

�
; for l � 3; (4.41)

which �(n; l) = (c1 + 2c2)nl does. Thus, time complexity is O(nlmax).

The overall complexity is linear space and O(nlmax) time | O(n logn) considering

only at classes, O(n2) in general.

However, the assumption of distinct pi puts an undesirable restriction on our in-

put. In their original algorithm from [59], Larmore and Hirschberg suggest modifying

the probabilities slightly to make them distinct, but this is inelegant and the re-

sulting algorithm has the additional drawback of being nondeterministic. A variant

of this approach involves using changes by a suitably small variable � > 0 to make

identical values distinct. However, here we present a more elegant alternative, still

deterministic, and applicable to all di�erentially monotonic cases.

84 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

In initial ordering, we sort the items mi in reverse of their order of appearance,

i.e., descending as mn; mn�1; : : : ; m1. Recall p is a nonincreasing vector. In the �rst

stage of the Package-Merge algorithm, then, combined items are paired o� such that

all similar-width items in one package have adjacent indices. Recall that packages of

items will be either in the �nal nodeset or absent from it as a whole. In addition, we

choose nonmerged items over merged in the case of ties, in the same manner as in the

two-queue bottom-merge method of Hu�man coding [91]. We obtain a deterministic

algorithm retaining this adjacency, and along with it width order preference for items

of equal weight at all steps. Thus we no longer need to worry about a case where

i < k but li > lk. An additional bene�t is that, in the case of ties, this results in

minimizing maximal length among optimal codes, as with bottom-merge Hu�man

coding in [84].

4.6 Further algorithmic optimization

Above we assumed we knew a maximum bound for length, although in the overall

complexity analysis we assumed this was n�1. We now explore a method for �nding

better upper bound and thus a more eÆcient algorithm. First two de�nitions due to

Larmore in [58]:

De�nition 25 The weight function corresponding to penalty f(l; p) is Mf (l; p) =

f(l; p)� f(l � 1; p).

De�nition 26 Consider penalty functions f and g. We say that g is atter than f

if l0 > l)Mg(l; p)Mf (l
0; p0) �Mf (l; p)Mg(l

0; p0).

A consequence of the Convex Hull Theorem of [58] is that, given g atter than f ,

for any p, there exist f -optimal L
(f)
X and g-optimal L

(g)
X such that L

(f)
X is lexicograph-

ically greater than L
(g)
X . This explains why the word \atter" is used.

Penalties atter than the linear penalty may therefore yield a useful upper bound,

simplifying complexity. All convex Campbell penalties are atter than the linear

penalty. (There are some generalized quasilinear convex coding penalties that are

4.7. EXAMPLES 85

not atter than the linear penalty (e.g., f(l; p) = lp2) and some atter penalties that

are not Campbell/quasilinear (e.g., f(l; p) = 2l(p + 0:1 sin�p)), so no other similarly

straightforward relation exists.)

Thus for most penalties we have considered, due to the aforementioned conse-

quence, we may use the results of a pre-algorithmic Hu�man coding of the items, or

the upper bounds of Buro in [13], to �nd an upper bound on codeword length. Using

the maximum unary codeword length of n � 1 and techniques involving the Golden

Mean, � ,

p
5+1
2

, Buro gives the upper limit of length for a (standard) Hu�man

codeword as

min

��
log�

�
� + 1

pn� + pn�1

��
; n� 1

�
; (4.42)

which would thus be an upper limit on codeword length for the minimal optimal code

obtained using any atter penalty function, such as a convex Campbell function. This

may be used to decrease complexity, especially in a case in which we encounter a at

class of problem inputs.

In addition to this, we may be able to adapt the techniques for length-limited

Hu�man coding of Mo�at et al. in [48,63,74,88,89], to improve upon our algorithm.

We do not explore these, however, as these cannot improve asymptotic results with

the exception of a few special cases. Unfortunately, other approaches to length-

limited Hu�man coding with improved algorithmic complexity [9, 83] cannot extend

to nonlinear penalties.

4.7 Examples

The generalized quasilinear convex coding problem includes the minimal DABR gen-

eralization (3.3) of the exponential case for d 2 [0;+1). It also includes such cases

as the length-limited coding of (4.24), the ath moment about zero

f(li; pi) = pil
a
i (4.43)

for a � 1, and the aforementioned case of

86 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

f(li; pi) = pi(�li + �l2i) (4.44)

for �; � > 0. These last three penalties are convex Campbell problems (2.2) and thus

di�erentially monotonic and atter than the linear penalty.

4.8 Extending to more exotic penalties

We previously mentioned that [58] used a quadratic penalty in order to �nd a code

minimizing a convex but nonquasilinear function corresponding to a delay penalty, the

expected waiting time between information request and receipt. For the statement

of the problem and properties, let �l , Ep[l(X)] and �l2 , Ep[l(X)2] for a given LX ,

and let �l� , minLX
�l, the minimized value in standard (Hu�man) coding. The delay

penalty is then given by

F (LX ;p) =

(
� �l2

2(1���l) +
�l; �l < 1

�

+1; �l � 1
�

(4.45)

where � is the expected number of requests in a channel per unit time, unit time

being chosen to correspond with the time to transmit one bit [26]. This formula is

a result of a model that assumes the message must pass through an M=G=1 queue,

i.e., that the requests are memoryless (Poisson) and we have only one device to

service them; thus the Pollaczek-Khinchin formula applies [30,51,79]. Service time is

assumed to be proportional to codeword length. (In the analogous problem, the linear

penalty minimizes delay for an M=G=1 queue.) Thus the problem is well-posed i�

� 2 (0; �l�
�1
). Our improvement of (4.44) improves the algorithmic performance in

�nding the optimal value from O(n5) to O(n4).

Let us note some structure to the solution of this problem. First, note that for

both light traÆc (� # 0) and heavy traÆc (� " �l�
�1
), the optimal solution is mini-

mum variance Hu�man coding, i.e., bottom-merge Hu�man coding. For light traÆc,

F (LX ;p) � �l+ �
2
�l2, so minimum variance coding should be used, as in equation (2.7).

For heavy traÆc, as noted by Flores in [26], F (LX ;p) < +1 only for optimal Hu�man

4.8. EXTENDING TO MORE EXOTIC PENALTIES 87

codes and F is minimized with minimum variance.

We might be tempted to conclude that minimum variance Hu�man coding is

suÆcient to solve the general case, but this is not true. Consider the two possible

monotonic code trees with four leaf nodes, the unary tree Lu = f1 2 3 3g and the

at tree Lf = f2 2 2 2g. Let p = (0:35; 0:35; 0:15; 0:15). The unary tree is optimal

for Hu�man coding and thus for high and low traÆc cases, but the at tree has

minimal delay i� � 2 [169�
p
4721

596
; 169+

p
4721

596
] � [0:1683; 0:3988] (requests per symbol).

For example, if � = 0:250, F (Lu) =
2489
820

� 3:035 and F (Lf) = 3, so the at code is

optimal.

While we may wish to generalize to arbitrary convex functions, there is no general

solution known which is more eÆcient than general techniques for such strongly NP-

hard problems [32], and the techniques which �nd precise solutions to these problems

have exponential complexity. However, the results of Larmore may be extended to

a larger class of problems by combining them with ours. Unfortunately, this class

applies to no practical penalty known to us, so we will not prove the case, but instead

only comment upon the tools needed to extend Larmore's result.

We want to have a quasiconcave trade-o� function between two convex general

quasilinear penalties, one of which is atter than the other.

De�nition 27 Given a real-valued function f de�ned over the domain D 2 R
n for

some n, that is, f : D ! R, superlevel set S�(f) , fx 2 D j f(x) � �g. If all

superlevel sets are convex, function f is said to be quasiconcave. Level set V�(f) ,

fx 2 D j f(x) = �g. Function f is said to be a trade-o� function if there is no vector

w 2 Rn and nonnegative (� 0) vector v 6= 0 such that w;w+v 2 V�(f) for some �.

A subcase of this is the delay problem previously considered. In order to see this,

we put the penalty in the form g(f1(LX ;p); f2(LX ;p)), where g(x; y) =
�y

2(1��x) + x,

f1(LX ;p) is �l, and f2(LX ;p) is �l2. The larger set of problems should be soluble in

the same manner as the delay problem. If a desirable application is found for this, a

formal proof and exact method would be of interest.

88 CHAPTER 4. GENERALIZED QUASILINEAR CONVEX PENALTIES

4.9 Review of �nite alphabet coding cases

Consider again the penalties proposed in Table 1.1. We have found that linear time

variants of Hu�man coding can solve F1 through F7. Penalties F8 through F13 may

be solved using the generalized quasilinear convex coding algorithm, and F14 may

be solved using the result of Larmore, which we reduced from O(n5) to O(n4) time

and O(n3) to O(n2) space; the quadratic space requirement is due to bookkeeping

in the overall algorithm [58]. Penalty F15 is the problem solved by Humblet in [45]

using a reduction to exponential Hu�man coding; this minimizes probability of bu�er

overow for a GI=G=1 bu�er of size ln a where gT is the moment generating function

for interarrival time.

Optimizing the concave penalty of a geometric mean, F16, however, remains open.

Also remaining open is how to extend these algorithms to in�nite alphabets, a topic

we consider in the next chapter.

Chapter 5

Extensions to in�nite alphabets

In this chapter, we explore instances of coding for a countably in�nite number of

codewords. We �nd a framework for understanding the linear penalty and others.

Considering other penalties, we �nd bounds and an algorithm analogous to those

previously found for in�nite linear instances.

5.1 Motivation

Now we turn the case where jX j = +1. The methods of previous chapters | variants

of Hu�man coding and the Package-Merge algorithm | are not readily adaptable, as

each is bottom-up in nature, starting with the least likely messages and building up.

Because of this, we should �rst investigate the linear penalty before considering any

other type.

In [64], Linder, Tarokh, and Zeger show that, for the linear penalty and a �xed p,

if H(p) = �
P

i pi lg pi < +1, a minimum average length code exists. For H(p) =

+1, no code can have �nite average length, so no optimum exists for the penalty

measure of expected length. However, this measure can be easily modi�ed. We can

consider average redundancy (which is equal to Kullback Leibler divergence [21] for

binary coding), but it is not trivial to prove that this is always de�ned. Fortunately,

another measure, one explored by Kato, Han, and Nagaoka in [49], yields identical

optimal codes as minimal redundancy restricted to cases in which redundancy is

89

90 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

de�ned. Instead of using redundancy, optimal codes are de�ned as codes for which

all compatible �nite entropy partitions' codes are optimal. (Recall from Section 2.3

that a compatible partition has a code corresponding to a common-root subtree of

the tree for the primary code in question.) For �nite entropy, these are equivalent.

Because this measure is equivalent to a limit of codes, the results of [64] extend to

this penalty.

Because X is in�nite, we cannot de�ne in�nite alphabet coding the same way

we do for �nite alphabets, that is, relating a �nite length sequence of inputs to a

�nite length sequence of outputs. We may still assume the list of inputs is sorted in

decreasing order, as the maximum of a countable list with known sum may always be

found in �nite time. However, we may de�ne two di�erent variations of the problem.

De�nition 28 Oracle modeled coding is the problem of calculating the length of a

codeword for item mi given, via a black box program or oracle, a desired �nite subset

of p (since this is all we may observe in �nite time). Program modeled coding is

the problem of calculating the length of a codeword for item mi given a complete

speci�cation of p; to solve this problem is to be able to calculate any value of li using

a program (or formula) based on the input program (or formula) completely specifying

p.

Recall that, even in the case of in�nite alphabets, we can always derive codewords

compatible with given codeword lengths, as discussed in Section 2.1. The two afore-

mentioned variations of the problem, however, have a number of di�erences. In the

program variation, we are assumed to have much more information, as we may be

able to �nd useful functions of the entire input | such as the conditional entropy

of an arbitrary subset of the outcomes | that would not be available in the in�nite

case. Because this may be necessary for coding but incalculable in the oracle case,

the distinction between program instances and oracle input instances is an important

one. Note also that we can obtain an oracle instance from a program one, but not

vice versa.

Another di�erence is that we specify the probability distribution with a �nite input

in the program case, where in the oracle case we instead converge to the distribution

5.1. MOTIVATION 91

(a) (b) (c)

1
8

1
8

1
8

3
8

3
8

3
8

1

16

1
16

1
16

3
16

3
16

3
16

1

32

1
32

1
32

3
32

3
32

3
32

1

64

1
64

3
64

3
64

3
64

3
128

3
128

3
128 3

256

Figure 5.1: Sample coding trees for in�nite alphabets

as in [64] via an in�nite sequence of programs. Finally, the Kolmogorov complexity

| the supremum of the lengths of the programs with p as output | may be �nite

or in�nite in the oracle variation, whereas in the program variation it must be �nite.

However, because we would expect to encounter optimal coding problems fully formed,

not given to us piecewise by some oracle, all practical instances of in�nite alphabet

coding have �nite description.

This is fortunate, as no algorithm can �nd even the optimum length l1 of �rst

codeword c1 for all p given a �nite subset of p. One can easily see this as follows:

Recall the dyadic geometric probability distribution, p(dg) = (1
2
; 1
4
; 1
8
; � � �). Con-

sider an event that has one outcome with probability p1 = 3
8
, any one of an in-

�nite number of distinct dyadic geometrically distributed events with probability

[k2N p2k = 3
8
, and any one of an in�nite number of distinct dyadic geometrically

distributed events with probability [k2N p2k+1 =
1
4
. This is p = (3

8
; 3
16
; 1
8
; 3
32
; 1
16
; � � �),

which may have optimal codes with either l1 = 1 or l1 = 2, as in Figure 5.1. Tree (a)

and tree (b) are both valid in�nite Hu�man coding trees for p.

Suppose we form a new probability mass function p
(m;�) by adding a very small

� > 0 to pm and subtracting � from pm+1 for some m > 1. If m is odd, l1 = 1 on

the optimal code; otherwise l1 = 2. Since m could be arbitrarily large, if the mass

92 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

function were p, there would be no way to use any �nite subset of its elements to show

it was not p(m;�) for some (m; �) pair. Thus even the �rst codeword is incalculable.

However, since this problem and its solution may be �nitely speci�ed (as we do in

our description), the example is codable in the instance of program modeled coding.

Note too that a simple modi�cation with random perturbations of an in�nite num-

ber of pi's would have in�nite complexity and thus have an incalculable yet existent

solution to a problem that cannot be �nitely speci�ed; such a problem is thus also in-

calculable. Returning our attention to Figure 5.1, we see that monotonic tree (c) also

results in an optimal code for p, one with the same length ensemble as (b), but is not

a Hu�man coding tree in the sense that (c) has �nite subtrees lacking the (strong)

sibling property. For trees not lacking this property, this interpretation | which

combines the results of Gallager from [29] and Kato, Han, and Nagaoka from [49] |

is useful for con�rming optimality.

For certain families of oracle modeled instances with �nite entropy, there exist

algorithms to construct optimal codes. An algorithm suitable for some oracle cases

is given by Kato, Han, and Nagaoka in [49]. We explore this result with ideas for

generalization to other families. We also consider some program modeled cases. We

then generalize to other penalties. First, however, we examine properties of optimal

in�nite item codes.

5.2 Properties of optimal in�nite item codes

Although LX does not uniquely determine a coding tree (e.g., tree (b) and tree (c)

in Figure 5.1), it does determine the number of leaf and internal nodes at each level.

This may be iteratively calculated as follows. Label the number of leaf nodes on

each level �X = f�1; �2; : : :g and the number of internal nodes �X = f�1; �2; : : :g. Let

NS(i) denote the number of i's in sequence S. Then, if we let �0 =
1
2
for purposes of

initialization,

5.2. PROPERTIES OF OPTIMAL INFINITE ITEM CODES 93

�i = NLX (i� 1); (5.1)

�i = 2�i�1 � �i: (5.2)

Thus, if jX j < +1, j�X j � 1 = j�X j = jLX j, and we end calculation when �i is 0. For

jX j = +1, �i > 0 8 i 2 X .

Using this, we may divide in�nite alphabet length ensembles into any one of a

number of categories. Particularly useful divisions follow:

De�nition 29 We call LX a simple length ensemble if lim infi!+1 �i = 1 and non-

simple otherwise. We call LX a supersimple or unary-ended length ensemble if

limi"+1 �i = 1. We call LX a pseudounary-ended or pseudounary length ensemble if

limi"+1 �i exists and is �nite. We call LX a large length ensemble if lim supi!+1 �i =

+1 and nonlarge otherwise. We call LX a superlarge length ensemble if limi"+1 �i =

+1.

For example, the trees in Figure 5.1 are nonsimple and nonlarge with limi"+1 �i = 2.

We may also use the above terms for the probability mass functions for which such

codes are optimal, although a given probability mass function, if it has several optimal

length ensembles, may be several of the above.

Figure 5.2 has two large examples which require some explanation. Consider the

two-dimensional geometric distribution, p(2g�) = (1� �)2 � (1; �; �; �2; �2; �2; �3; : : :).

For any �, this would have a large tree, and we might expect this to be the easiest

case in which one can �nd the optimal tree for a nondyadic, nonsimple, large prob-

ability mass function. However, no case has been solved for � 2 (0; 1)nf1
2
g. Tree

(a) of Figure 5.2, related to the two-dimensional geometric distribution, is formed

by starting with the two-element code and combining the root for the three-element

code with the rightmost leaf node for the former (two-element) tree, and continuing

on, combining the root of the nth tree | an n + 1-element at code tree | to a

deepest root of the n�1th tree. This is a simple large tree, as lim infi!+1 �i = 1 and

lim supi!+1 �i = +1. As � # 0, � for the optimal code tree for a two-dimensional

94 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

(a) (b)

Figure 5.2: More examples of in�nite coding trees

geometric distribution approaches � pointwise for this tree. Tree (b) of Figure 5.2 is

the monotonic tree corresponding to �i = i, a superlarge tree, since limi"+1 �i = +1.

This is the optimal tree for the two-dimensional geometric distribution at � = 1
2
.

One interesting question is whether or not tree (b) is optimal for any � 6= 1
2
, and,

if so, for what range of values. This is an example of a question we may ask about

in�nite codes which sounds deceptively simple. Although we do not answer this, we

consider the question as a means of presenting some techniques for analysis that may

be fruitful for this and similar problems.

Note �rst that a tree is optimal if and only if the (strong) sibling property holds.

(Recall that the strong sibling property states that, in an optimal tree, each nonroot

node has a sibling and the nodes may be listed in order of nonincreasing weight,

each node being adjacent in the list to its sibling.) Because of the structure of the

tree, we need only check the nodes to the extreme left and right on each level to

determine whether the code conforms to the sibling property. Thus it is easy to write

an algorithm to empirically �nd the depth at which this property is violated for a

5.2. PROPERTIES OF OPTIMAL INFINITE ITEM CODES 95

given �. However, such an algorithm will not halt if this does not hold, so this does

not solve our problem. An algebraic solution is also not apparent.

A di�erent approach involves geometrically examining the set of probability mass

functions for which a given tree is optimal. A given L�X is optimal i� 8 LX ;
P

i pil
�
i �P

i pili, so the optimality regions are convex polytopes, due to these being intersec-

tions of half-hyperspaces. This view may be misleading, however, in a case with an

in�nite alphabet and thus in�nite dimensions. For example, we might suspect that a

parametrized continuous path converging on the \center point" | the corresponding

dyadic distribution | would have an epsilon neighborhood in which the correspond-

ing length ensemble is optimal. As a counterexample, consider the following path of

probability vectors indexed by t:

q(t) = (2�1; 2�2; � � � ; 2�btc; (2� hti)2�btc�1; hti2�btc�1; 0; 0; � � �) (5.3)

This path converges to the dyadic geometric p(dg) = (2�1; 2�2; � � �) in metric space

Lr | that in which distance is measured by d(p; q) =
P

i(pi � qi)
r | for all r � 1,

the distance being bounded above by 2�t. However, no point along this path has the

same optimal solution as its dyadic limit point.

Most countably in�nite alphabet distributions currently codable are variants of

the geometric distribution, that is, for p(g�) of the form p
(g�)
i = (1� �)�i. For all �,

the pure geometric distribution has a pseudounary (and thus nonlarge) optimal length

ensemble. A pseudounary length ensemble is well-behaved in the sense that the value

of �i (and thus �i) eventually converges; thus the length ensemble corresponds to a

code that may be represented as the concatenation of a �nite alphabet code with,

for some codewords, a unary code. All nondyadic nonsimple probability distributions

with known optimal codes are pseudounary geometric variants [1, 28, 35].

Distributions other than geometric varieties include Poisson and Zeta distribu-

tions. The Poisson distribution with parameter � > 0 has the form pi = i!�1�ie��

for i � 0 and decays superexponentially. It is thus supersimple (unary-ended) and

easy to characterize [44]. The Zeta distribution with parameter � > 1 has the form

96 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

pi = f[1 + �(�)]i�g�1 for n � 1 and decays subexponentially. (�(�) ,
P+1

k=1 k
��.) It

is thus superlarge and has eluded solution.

Consider the special case of the inverse square distribution, pi =
6
�2
i�2. This

would seem to be the simplest instance of the Zeta distribution, and the �rst few

lengths seem empirically derivable. However, neither the full solution nor this integer

sequence has been characterized. Unlike geometric cases, the optimal solution to the

Zeta distribution does not have a predictable structure, this due to the logarithmic

relationship between probability and (ideal) length.

In fact, no superlarge optimal solution has been found for any nondyadic problem.

The occurrence of the Zeta distribution is, however, far rarer than the occurrence of

the geometric distribution and its variants, which come up in a number of predictive

coding techniques, such as image coding [93].

The Golomb code, optimal for geometric probability distributions, is a pseu-

dounary extension of the unary code [36]. For p0 < ��1 =
p
5�1
2

, this is the unary

code itself, a simple length ensemble. For p0 > ��1, it is a nonsimple length ensemble.

p0 = ��1 has both simple and nonsimple optimal length ensembles [28, 35]. All are

nonlarge.

If a probability mass function has a simple length ensemble as its optimal code

and we can �nd an in�nite subset of the values k for which �k = 1, we can construct

an arbitrarily large portion of the code tree. We briey explain how to �nd and use

this property. Let psj ,
P+1

i=j+1 pi = 1�
Pj

i=1 pi. Suppose there exist in�nitely many

j's in X such that pj � psj. It is immediate that for any optimal code with lengths l�i ,

�l�j+1 = 1 for these values of j [49].

Let us de�ne T (j) , fj + 1; j + 2; : : :g and the subset of p consisting of the

corresponding weights pT (j) , [+1
i=j+1fpig. (Recall that we use the term \weights"

when we do not have
P

i pi = 1.) The optimal tree for these weights is thus a subtree

of the overall optimal tree. (Recall that every subtree of an optimal tree is an optimal

tree.) For any �nite subset of the codewords C ~X � CX , we may thus build the �nite

tree for p0 = (p1; p2; � � � ; pj; p
s
j) | where j is the minimum j � maxi2 ~X i such that

pj � psj | and calculate the desired codewords (or codeword lengths) from this.

Nonsimple length ensembles may also be calculated in some cases, although all

5.3. EXTENDING TO OTHER PENALTIES 97

known ones are program modeled cases; for example, if we know p is dyadic or

geometric, we may use a Shannon or Golomb code, respectively, and this code may

be nonsimple. In some sense, we expect most interesting probability functions to

be nonsimple, as a simple distribution implies either a dramatic geometric decline

or a lack of uniformity extending to in�nity. However, as in the example illustrated

by Figure 5.1, uniformity can lead to unknowable solutions. A general means of

constructing the optimal average length code and/or proving its incalculability for

�nite entropy nonsimple probabilities has yet to be discovered.

This indicates that perhaps | with the exception of dyadic and simple distribu-

tions | we cannot code large distributions, or even nonpseudounary distributions.

More investigation is needed to better understand this.

5.3 Extending to other penalties

5.3.1 Existence of optimal codes

The existence results of [64] may be carried over to quasilinear penalties. Consider

continuous strictly monotonic f : R+ ! R+ (as proposed by Campbell) and p =

(p1; p2; : : :) such that

F �(p; f) , inf
P
i 2
�li�1;

li2Z

f�1
"
+1X
i=1

pif(li)

#
(5.4)

is �nite. Consider, for an arbitrary n 2 N , optimizing for f with weights

p
(n)
, (p1; p2; : : : ; pn; 0; 0; : : :) (5.5)

Denote an optimal code

C(n)
, fc

(n)
1 ; c

(n)
2 ; : : : ; c(n)n ;�;�; : : :g (5.6)

where � is the null string and we use an in�nite code | called a binary truncated

code | for convenience. The codeword lengths of this binary truncated code are

98 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

L
(n)
X , fl

(n)
1 ; l

(n)
2 ; : : : ; l(n)n ; 0; 0; : : :g (5.7)

Thus, for convenience, l
(j)
i = 0 and c

(j)
i = � for i > j. These lengths are also optimal

for (
Pn

j=1 pj)
�1 � p(n), the vector of normalized weights.

Following [64], we say a sequence of binary sequence codes C(1); C(2); C(3); : : :

converges to an in�nite pre�x-free code C = fc1; c2; : : :g if, for each i, the ith codeword

in each code in the sequence is eventually codeword ci.

Theorem 11 Given Campbell f and p for which the corresponding F �(p; f) < +1,

the following hold:

1. There exists a sequence of binary truncated codes that converges to an optimal

code for p; thus the in�mum is achievable.

2. Any optimal binary code for p must satisfy the Kraft inequality with equality.

Proof: Because here we are concerned only with cases in which the �rst length is

at least 1, we may restrict ourselves to the domain [f�1[p1f(1)];+1), and may thus

assume without loss of generality | as in Section 4.2 | that f is increasing. Recall

F �(p; f) = inf
P
i 2
�li�1;

li2Z

f�1
"
+1X
i=1

pif(li)

#
< +1: (5.8)

Then there exists an LX
0 = fl01; l

0
2; l

0
3; : : :g 2 Z

+1 such that

f�1
"
+1X
i=1

pif(l
0
i)

#
< F �(p; f) + 1 and

+1X
i=1

2�l
0
i � 1 (5.9)

and thus

f�1
"

nX
i=1

pif(l
0
i)

#
< F �(p; f) + 1 and

nX
i=1

2�l
0
i < 1: (5.10)

So, for minimizing L
(n)
X , we have

5.3. EXTENDING TO OTHER PENALTIES 99

f�1
"

nX
i=1

pif(l
(n)
i)

#
� f�1

"
nX
i=1

pif(l
0
i)

#
< F �(p; f) + 1 (5.11)

and

pjf(l
(n)
j) �

nX
i=1

pif(l
(n)
i) < f(F �(p; f) + 1) (5.12)

for all j. This implies that

l
(n)
j < f�1

�
f(F �(p; f) + 1)

pi

�
: (5.13)

Thus we have shown that, for any i 2 N , the sequence l
(1)
i ; l

(2)
i ; l

(3)
i ; : : : is bounded.

A corresponding sequence of codewords may therefore have only a �nite set of values,

so the sequence of codewords c
(1)
i ; c

(2)
i ; c

(3)
i ; : : : | as well as any in�nite subsequence

| has a convergent subsequence. As in [64], we may conclude that there exists

a subsequence of codes, C(n1); C(n2); C(n3); : : :, that converges to an in�nite code bC
with codeword lengths cLX = fbl1; bl2; bl3; : : :g. As a limit of pre�x-free codes, this is

itself a pre�x-free code, and the codeword lengths converge pointwise to those of the

convergent code.

We now show that bC is optimal. Let f�1; �2; �3 : : :g be the codeword lengths of

an arbitrary pre�x-free code. For every k, there is a j � k such that bli = l(nm) for

any i � k if m � j. Due to the optimality of each C(n), for all m � j:

kX
i=1

pif(bli) =

kX
i=1

pif(l
(nm)

i) (5.14)

�
nmX
i=1

pif(l
(nm)
i) �

nmX
i=1

pif(�i): (5.15)

Therefore,

kX
i=1

pif(bli) � nmX
i=1

pif(l
(nm)

i) �
nmX
i=1

pif(�i) �
+1X
i=1

pif(�i) (5.16)

100 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

and, taking k! +1,
P

i pif(
bli) �Pi pif(�i), leading directly to f

�1
hP

i pif(
bli)i �

f�1 [
P

i pif(�i)] and the optimality of bC.
Suppose the Kraft inequality is not satis�ed with equality for optimal codeword

lengths cLX = fbl1; bl2; : : :g. Then there is a k 2 N such that 2�lk+
P

i 2
�li < 1. Consider

code fbl1; bl2; : : : ;dlk�1; blk�1;dlk+1;dlk+2; : : :g. This code satis�es the Kraft inequality and

has penalty f�1[
P

i pif(
bli) + ff(blk � 1)� f(blk)gpk)] < f�1

hP
i pif(

bli)i, and thus cLX
is not optimal. Therefore the Kraft inequality must be satis�ed with equality.

It may seem obvious that the Kraft inequality should be satis�ed with equality

for an optimal in�nite code, but recall that an in�nite full tree need not satisfy the

Kraft inequality with equality. It is worthwhile at this point to examine the example

in [64] of an in�nite full tree failing equality.

Recall the technique of Elias described in Section 2.1, in which each codeword ci of

length li is viewed as occupying a portion of the [0; 1) interval beginning at its binary

fractional expansion and occupying a subinterval of length 2�li , as in Figure 2.1. The

intervals are disjoint and that their summed length is the Kraft inequality sum.

Consider the following code C:

c1 = 0 0

c2 = 0 1 0 0 0

c3 = 1 0 0 0 0

c4 = 1 1 0 0 0

c5 = 0 1 0 0 1 0 0 0 0

c6 = 0 1 0 1 0 0 0 0 0
...

(5.17)

This code has in�nite number of codewords, each consisting of blocks of increasing

size | two bits, then three bits, then four, etc. If a block consists of all zero bits, this

indicates the codeword's termination. Otherwise, there is at least one more block in

the codeword. Thus it is obviously a pre�x-free code. However, we will show that,

although corresponding to a full coding tree, it does not satisfy the Kraft inequality

with equality.

5.3. EXTENDING TO OTHER PENALTIES 101

Formalizing as in [64], let CAT(a1; a2) and the equivalent CAT2
i=1 ai be two meth-

ods of denoting binary concatenation. Let Nj denote the set of j-bit binary strings

excluding 0j, the j-bit binary string consisting of all 0's. Thus the size of the set Nj

is jNjj = 2j � 1. We may now formally de�ne:

C = f00g [

" 1[
k=2

CAT

��
k

CAT
j=2

Nj

�
; 0k+1

�#
: (5.18)

If the tree were not full, there would exist a �nite length sequence which is not the

pre�x of a valid codeword, does not contain a valid codeword as a pre�x, and is not

valid codeword itself, i.e., a sequence not compatible with the code. Suppose there

exists such a sequence of length m. Note that we may pad the end of such a sequence

with additional bits, because if the original sequence is incompatible, no compatible

sequence contains it as a pre�x. Let k = d1
2
(�3 +

p
9 + 8m)e. This is the number

of variable length blocks necessary to form the smallest codeword at least as long as

this sequence, the �rst block being of length 2, the second of length 3, etc. We may

pad the sequence with [m � 1
2
(k + 1)(k + 2) � 1] zeroes, so it may be composed of

such blocks.

Now we may show by induction that all possible sequences (of blocks) are compat-

ible: It is obvious that one-block (two-bit) sequences are all valid codewords (f00g) or

pre�xes to valid codewords (f01000,10000,11000g). Assume all sequences with k � 1

such block are pre�xes for valid codewords (those for which the next k digits are 0),

are valid codewords, or have valid codewords as pre�xes. In the last two cases, this

remains true for the k-block sequence. Thus we may assume that the �rst k�1 blocks

comprise the pre�x to a valid codeword. If the next k digits are 0, we have a valid

codeword. Otherwise, we have a pre�x to a valid codeword made by concatenating

the (padded) sequence with 0k+1 (k + 1 additional 0's). Thus no such incompatible

sequence exists, and the tree is full.

Note that, although it is diÆcult to calculate the exact value of the Kraft inequality

sum for this code, we can upper bound it as follows:

102 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

X
i

2�li =
1

4
+

1X
k=2

����CAT
��

k

CAT
j=2

Nj

�
; 0k+1

����� �2�Pk+1

n=2
n
�

(5.19)

=
1

4
+

1X
k=2

kY
j=2

(2j � 1)

!�
2�

Pk+1

n=2
n
�

(5.20)

<
1

4
+

1X
k=2

�
2
Pk

n=2
n
��

2�
Pk+1

n=2
n
�

(5.21)

=

1X
k=1

2�(k+1) (5.22)

=
1

2
(5.23)

Equation (5.19) �nds an expression for the Kraft inequality sum by multiplying the

number of codewords of each possible length (length being equal to
Pk+1

n=2 n for a

k-block codeword) by their Kraft inequality term (2�li = 2�
Pk+1

n=2
n). Equation (5.20)

calculates explicitly the number of codewords of each length. Equation (5.21) in-

creases each multiplicative term to the smaller power of two greater than or equal to

it. Equation (5.22) cancels redundant terms and equation (5.23) calculates an in�nite

series.

The Kraft inequality is not satis�ed with equality because each valid codeword of

length m is required to end in 1
2
(�1+

p
9 + 8m) zeroes. Thus, although full, this code

may be considered wasteful. Note that we may also use the analogy of Figure 2.1 to

explain this. Because we have an in�nite number of codewords, it is possible to �ll in

the [0; 1) interval in such a way as to leave no gaps and yet have the �lling intervals

sum to a number less than 1.

We thus have yet another example of how in�nite coding di�ers from �nite cod-

ing, a reminder that we should not assume properties carry over, just as we should

not assume properties from the linear penalty carry over to other penalties. Next,

however, we see that one basic property | having to do with entropy | does.

5.3. EXTENDING TO OTHER PENALTIES 103

Theorem 12 Recall that

H(p; f) , inf
P
i 2
�li�1;

li2R

f�1
"X

i

pif(li)

#
(5.24)

for f : R+ ! R
+ . If H(p; f) < +1 and either f is subtranslatory (see Section 4.2)

or f(x + 1) = O(f(x)) (which includes all concave cases and all decreasing cases),

then the coding problem

F �(p; f) = inf
P
i 2
�li�1;

li2Z

f�1
"X

i

pif(li)

#
(5.25)

has a minimizing L�X resulting in a �nite value for F �(p; f) = F (L�X ;p).

Proof: Assume without loss of generality that f is increasing. If f is subtrans-

latory, then F �(p; f) < 1 + H(p; F) < +1. If f(x + 1) = O(f(x)), then there are

�; � > 0 such that f(x+ 1) � maxf�; �f(x)g for all x. Then

f�1
"X

i

pif(li + 1)

#
� f�1

"X
i

pimaxf�; �f(li)g

#
(5.26)

< f�1
"X

i

pif�+ �f(li)g

#
(5.27)

= f�1
"
� + �

X
i

pif(li)

#
(5.28)

So F �(p; f) < f�1 [�+ �f (H(p; f))] < +1, and the in�mum, which we already

proved may be minimized, is �nite.

5.3.2 Construction of optimal codes

The constructive results of Kato, Han, and Nagaoka in [49] may also be extended,

albeit only to the exponential penalty. Also, because the linear case is the only

104 CHAPTER 5. EXTENSIONS TO INFINITE ALPHABETS

case in which weights strictly sum, the results are not as strong. Nevertheless, a

generalization may be made.

Suppose we know that an optimal exponential penalty tree for a given probability

mass function w is a simple tree. Then for this optimal code of lengths L�X , �l�j+1 = 1

for an in�nite number of values of j. In other words, for these values of j, if T (j) ,

fj + 1; j + 2; : : :g, an optimal tree for the subset of w, wT (j), is a subtree of the

optimal tree.

We can use equation (2.22) to see that, on each subtree associated with such a

value of j,

"X
i

�
wiP
k wk

� 1

1+b

1+b
b

�

"X
i

�
wiP
k wk

�
2bl

�
i

1

b

(5.29)

< 2

"X
i

�
wiP
k wk

� 1

1+b

1+b
b

(5.30)

where all summations are over T (j). This may be simpli�ed and divided into three

cases as follows:

(
P+1

i=j+1w
1

1+b

i)1+b � wsj < 2b(
P+1

i=j+1w
1

1+b

i)1+b; b > 0

wsj =
P+1

i=j+1wi; b = 0

2b(
P+1

i=j+1w
1

1+b

i)1+b < wsj � (
P+1

i=j+1w
1

1+b

i)1+b; b < 0

(5.31)

where wsj ,
P+1

i=j+1wi2
bl�i and l�i 's are lengths for an optimal in�nite alphabet code.

Since indices T (j) correspond to weights forming an optimal subtree within the op-

timal tree, the weight on the subtree root node is wsj . From the above equations, we

may derive

wj;bmax , 2(b
+)

 X
i

w
1

1+b

i

!1+b

(5.32)

where b+ , max(0; b) and

5.3. EXTENDING TO OTHER PENALTIES 105

w
j;b
min , 2(b

�)

 X
i

w
1

1+b

i

!1+b

(5.33)

where b� , min(0; b), so that wsj 2 [wj;bmin; w
j;b
max].

Using this, we may be able to build (an arbitrarily large subset of) an optimal

exponential Hu�man code in some cases where there exist in�nitely many j's in X

such that wj � wj;bmax. For any �nite subset of codewords C ~X � CX , we can �nd the

minimum j � maxi2 ~X i such that wj � wj;bmax, and build a �nite exponential tree for

w
[1;j]
max , (w1; w2; � � � ; wj; w

j;b
max) as well as one for w

[1;j]
min , (w1; w2; � � � ; wj; w

j;b
min). If

these result in the same length ensemble, this is the length ensemble to use. Otherwise,

we could try the next j satisfying the aforementioned criterion, continuing to try such

values until we �nd the codeword lengths or until some cut-o� point at which we would

give up.

Note that we are not guaranteed that such an algorithm will work unless b = 0.

(Values close to 0, however, are more likely to work than those not as close.) Also note

that, although wsj could be any value in [wj;bmin; w
j;b
max], because all (w1 w2 � � � wj w

s
j)

are linear combinations of w
[1;j]
max and w

[1;j]
min, testing only the two boundary values is

suÆcient.

For best results, bottom-merging [84] should be used when building a tree using

w
[1;j]
min and top-merging, preferring merged items to singletons, when building a tree

using w
[1;j]
max, so that, if there are multiple solutions to either case and two optimal

trees common to the two cases, the same tree is chosen.

In addition, only in the case of b = 0 can we apply this method directly in an oracle

modeled case, as we need to calculate an in�nite sum. However, we can in practice

usually �nd such in�nite sums, and, failing that, may be able to bound [wj;bmin; w
j;b
max].

Chapter 6

Concluding Remarks

In this chapter, we briey summarize the main contributions of this dissertation and

discuss promising directions for further research.

6.1 Summary of contributions

The four main contributions of this dissertation are:

1. Extensions of Hu�man coding to variants of the exponential penalty with de-

terministic solutions, to the siege problem, to minimal maximal pointwise re-

dundancy, and to minimal d-average b-redundancy, the last of which includes

several previously examined penalties;

2. A method for solving the generalized quasilinear convex coding problem, which

includes, may be extended to, and improves upon earlier penalties;

3. Approaches to in�nite alphabet coding for nontrivial nonlinear penalties;

4. Coding bounds, frameworks, and other properties for these and other general

problems with alternative coding penalties.

Figure 1.2 presents a visual summary of �nite alphabet cases, with examples of solved

problems given in Section 4.9.

106

6.2. EXTENSIONS AND FUTURE DIRECTIONS 107

6.2 Extensions and future directions

The previous chapter lays down a framework for seeing whether codes on in�nite

alphabets are existent [35,64] or calculable [28,36,49,71] for certain instances and/or

distributions of such problems, both for the standard linear penalty and for other

penalties. Further bounds, limits, and heuristics would also be interesting. For ex-

ample, how does the sequence of solutions for a limiting sequence of probabilities

behave with respect to the optimal solution? This has been indirectly explored pre-

viously in [19, 64].

It would be interesting to see if the above methods might generalize to other fami-

lies of penalties, such as a general family of nonquasilinear or nonexponential noncon-

vex penalties. An example of a nonexponential nonconvex penalty is the geometric

mean, given as F16 in Table 1.1, which may be presented in the form of equation (2.3)

with f(x) = logx. Nonquasilinear objectives are also of interest. A trivial example

of such an objective is minimizing median length, which may be done by �nding imed,

the minimum i for which
Pi

j=1 pj >
1
2
, and assigning codeword lengths dlg(imed+1)e

to the imed most likely items and arbitrary codeword lengths satisfying the Kraft

inequality to the rest. We discussed the delay penalty, given in equation (4.45), and

possibilities for generalization; other such practical yet complicated penalties might

also be soluble.

The situation of maximizing the probability of some measure of success | con-

sidered �rst by Humblet in [45] and also by us in Section 2.4.1 | is one worth further

examination, particularly with the rising importance of communication over unreli-

able networks. For example, processes with memory in problems similar to that of

Section 2.4.1 could be examined. Along the same lines, because we do not always

have a lossless channel in real-world situations, formulation and solution of low bitrate

source-channel coding problems would also be of interest.

Competitive optimality [22] is another criterion, but as there exists no competi-

tively optimal code for many probabilities, this does not have the generality of the

other penalties considered. Furthermore, when it does exist, it is an optimal solution

to standard (Hu�man) coding [97].

108 CHAPTER 6. CONCLUDING REMARKS

On a related note, it may be good to explicitly prove and further examine the

extensions to Lemmas 2{4 and Theorems 5{6 alluded to in Section 2.5.3. We also

might �nd several other implications of bottom-merge and top-merge coding, as in

the linear case [27, 55, 68], especially for more general convex penalties.

The problem space may be expanded by imposing constraints on codewords |

on alphabetic order [42], on runlength and/or charge [67], on suÆxes and/or pre�xes

[10,17,98]. For example, generalizations of the Hu-Tucker algorithm for alphabetically

ordered trees, as in [40, 47, 61], should be similar to those of the Hu�man algorithm.

If we do not know the exact probability distribution, but rather a class of prob-

ability distributions, we may want to use universal techniques such as those used

for the linear penalty in [21] and for minimal maximal pointwise redundancy in [24].

These results may be generalizable.

Stricter upper bounds on DABR may exist as in the linear case; such linear case

upper bounds may be found in [29,98], among others. Note that the bound for maxi-

mum b-redundancy is trivial. (A minimax redundancy code on a uniform alphabet of

size 2n+ 1 has maximum redundancy rmax = n+1� lg(2n+ 1), which approaches 1,

a supremum previously established.) Because linear coding is the only case in which

a subtree of weights is always the weight of the weight sum, these bounds may be

elusive.

Finally, although many of the above results are easily extendable to nonbinary

coding (that with � 3 output symbols), other results, such as those of the generalized

quasilinear convex coding algorithm, may not be. Thus it may be worthwhile to �nd

such extensions.

Bibliography

[1] J. Abrahams, \Hu�man-type Codes for In�nite Source Distributions," Journal

of the Franklin Institute, Vol. 331B(3), pp. 265-271, 1994; also in Proceedings,

IEEE Data Compression Conference, pp. 83-89, Mar. 29-31, 1994.

[2] J. Abrahams, \Hu�man Code Trees and Variants," DIMACS Workshop on

Codes and Trees: Algorithmic and Information Theoretic Approaches, Rutgers

University, Piscataway, NJ, 1998.

[3] J. Abrahams, \Code and parse trees for lossless source encoding," Communi-

cations in Information and Systems, Vol. 1, pp. 113-146, 2001.

[4] J. Acz�el, \On Mean Values," Bulletin of the American Mathematical Society,

Vol. 54, pp. 392-400, 1948.

[5] J. Acz�el, \Determination of All Additive Quasiarithmetic Mean Codeword

Lengths," Zeitschrift f�ur Wahrscheinlichkeitstheorie und verwandte Gebiete,

Vol. 29, pp. 351-360, 1974.

[6] J. Acz�el, \On Shannon's Inequality, Optimal Coding, and Characterizations of

Shannon's and R�enyi's Entropies," Symposia Mathematica, Istituto Nazionale

di Alta Matematica, Roma, 1973, Vol. 15, pp. 153-179, Academic Press, New

York, NY, 1975.

[7] J. Acz�el and Z. Dar�oczy, On Measures of Information and Their Characteriza-

tions, Academic Press, New York, NY, 1975.

109

110 BIBLIOGRAPHY

[8] J. Acz�el and J. Dhombres, Functional Equations in Several Variables, Cam-

bridge University Press, Cambridge, MA, 1989.

[9] A. Aggerwal, B. Schieber, and T. Tokuyama, \Finding a minimum-weight k-link

path on graphs with the concave Monge property and applications," Discrete

and Computational Geometry, Vol. 12, pp. 263-280, 1994.

[10] T. Berger and R. W. Yeung, \Optimum `1' ended binary pre�x codes," IEEE

Transactions on Information Theory, Vol. IT-36, pp. 1435-1441, 1990.

[11] A. Bookstein and S. T. Klein, \Is Hu�man Coding Dead?" Computing, Vol. 50,

pp. 279-296, 1993.

[12] S. Boyd and L. Vandenberghe, Convex Optimization, preprint, 2002 [Online,

http://www.stanford.edu/~boyd/cvxbook.html, retrieved May 2003].

[13] M. Buro, \On the maximum length of Hu�man codes," Information Processing

Letters, Vol. 31, pp. 219-234, 1993.

[14] L. L. Campbell, \A Coding Problem and R�enyi's Entropy," Information and

Control, Vol. 8, pp. 423-429, 1965.

[15] L. L. Campbell, \De�nition of Entropy by Means of a Coding Problem,"

Zeitschrift f�ur Wahrscheinlichkeitstheorie und verwandte Gebiete, Vol. 6, pp.

113-118, 1966.

[16] R. M. Capocelli, A. de Santis, and G. Persiano, \Binary pre�x codes ending in

a `1'," IEEE Transactions on Information Theory, Vol. IT-40, pp. 1296-1302,

1994.

[17] S. Chan and M. J. Golin, \A dynamic programming algorithm for constructing

optimal `1'-ended binary pre�x-free codes," IEEE Transactions on Information

Theory, Vol. IT-46, pp. 1637-1644, 2000.

[18] C. Chang and J. Thomas, \Hu�man algebras for independent random vari-

ables," Discrete Event Dynamic Systems, Vol. 4, pp. 23-40, 1994.

BIBLIOGRAPHY 111

[19] T. Chow and M. Golin, \Convergence and Construction of Minimal-Cost In�-

nite Trees," Manuscript based on talk at International Symposium on Informa-

tion Theory, Lausanne, Switzerland, 1999.

[20] D. Cohen and M. L. Friedman, \Weighted Binary Trees for Concurrent Search-

ing," SIAM Journal of Algorithms, Vol. 20, pp. 87-112, 1996.

[21] T. Cover and J. Thomas, Elements of Information Theory, Wiley-Interscience,

New York, NY, 1991.

[22] T. M. Cover, \On the Competitive Optimality of Hu�man Codes," IEEE Trans-

actions on Information Theory, Vol. IT-37, pp. 172-174, 1991.

[23] G. Dial, \On a Coding Theorem Connected with Entropy of Order-Alpha and

Type-Beta," Information Sciences, Vol. 30, pp. 55-65, 1983.

[24] M. Drmota and W. Szpankowski, \Generalized Shannon Code Minimizes the

Maximal Redundancy," Proceedings, Latin American Theoretical Informatics

(LATIN), Cancun, Mexico, 2002.

[25] R. Durrett, Probability: Theory and Examples, Duxbury Press, Belmont, CA,

1996.

[26] C. Flores, Encoding of Bursty Sources Under a Delay Criterion, Ph.D. Thesis,

University of California, Berkeley, 1983.

[27] G. Forst and A. Thorup, \Minimal Hu�man trees," Acta Informatica, Vol. 36,

pp. 721-734, 2000.

[28] R. G. Gallager and D. C. Van Voorhis, \Optimal Source Codes for Geometrically

Distributed Integer Alphabets," IEEE Transactions on Information Theory,

Vol. IT-21, pp. 228-230, 1975.

[29] R. G. Gallager, \Variations on a Theme by Hu�man," IEEE Transactions on

Information Theory, Vol. IT-24, 1978.

112 BIBLIOGRAPHY

[30] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers,

Boston, MA, 1996.

[31] M. R. Garey, \Optimal binary search trees with restricted maximal depth,"

SIAM Journal on Computing, Vol. 3, pp. 101-110, 1974.

[32] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman

and Company, San Francisco, CA, 1979.

[33] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,

Kluwer Academic Publishers, Boston, MA, 1992.

[34] C. R. Glassy and R. M. Karp, \On the Optimality of Hu�man Trees," SIAM

Journal on Applied Mathematics, Vol. 31, pp. 368-378, 1976.

[35] M. J. Golin, \A Personal View of Generalized Hu�man Encoding," Proceedings,

Combinatorics of Searching Sorting and Coding, Ischia Island, Italy, 2001.

[36] S. W. Golomb, \Run-length encodings," IEEE Transactions on Information

Theory, Vol. IT-12, pp. 399-401, 1966.

[37] M. Gr�otschel, L. Lov�asz, and A. Schrijver, Geometric Algorithms and Combi-

natorial Optimization, Springer-Verlag, 1991.

[38] Y. Horibe, \Remarks on `compact' Hu�man trees," Journal of Combinatorics,

Information and System Sciences, Vol. 9, pp. 117-120, 1984.

[39] T. C. Hu, D. J. Kleitman, and J. K. Tamaki, \Binary Trees Optimum Under

Various Criteria," SIAM Journal on Applied Mathematics, Vol. 37, pp. 246-256,

1979.

[40] T. C. Hu and M. T. Shing, Combinatorial Algorithms, Second edition, Dover

Publications, Mineola, NY, 2002.

[41] T. C. Hu and K. C. Tan, \Path length of binary search trees," SIAM Journal

on Applied Mathematics, Vol. 22, pp. 225-234, 1972.

BIBLIOGRAPHY 113

[42] T. C. Hu and A. C. Tucker, \Optimal computer search trees and variable length

alphabetic codes," SIAM Journal on Applied Mathematics, Vol. 21, pp. 514-532,

1971.

[43] D. Hu�man, \A Method for the Construction of Minimum-Redundancy Codes,"

Proceedings of the IRE, Vol. 40, pp. 1098-1101, 1952.

[44] P. A. Humblet, \Optimal Source Coding for a Class of Integer Alphabets,"

IEEE Transactions on Information Theory, Vol. IT-24, pp. 110-112, 1978.

[45] P. A. Humblet, \Generalization of Hu�man Coding to Minimize the Probability

of Bu�er Overow," IEEE Transactions on Information Theory, Vol. IT-27,

pp. 230-232, 1981.

[46] F. K. Hwang, \On �nding a single defective in binomial group testing," Journal

of American Statistical Association, Vol. 69, pp. 146-150, 1974.

[47] M. Karpinski, L. L. Larmore, and W. Rytter, \Correctness of constructing

optimal alphabetic trees revisited," Theoretical Computer Science, Vol. 180,

pp. 309-324, 1997.

[48] J. Katajainen, A. Mo�at, and A. Turpin, \A Fast and Space-Economical Algo-

rithm for Length-Limited Coding," Proceedings of the International Symposium

on Algorithms and Computation, Cairns, Australia, p. 1221, Dec. 1995.

[49] A. Kato, T. S. Han, and H. Nagaoka, \Hu�man Coding with an In�nite Al-

phabet," IEEE Transactions on Information Theory, Vol. IT-42, pp. 977-984,

1996.

[50] G. O. H. Katona and T. O. H. Nemetz, \Hu�man Codes and Self-Information,"

IEEE Transactions on Information Theory, Vol. IT-22, pp. 337-340, 1976.

[51] A. Y. Khinchin, \Matematiqeska� teori� stacionarno$ioqeredi" (\Mathematical

Theory of Stationary Queues"), Matematicheskii Sbornik, Vol. 39, pp. 73-84,

1932.

114 BIBLIOGRAPHY

[52] J. F. C. Kingman, \Inequalities in the Theory of Queues," Journal of the Royal

Statistical Society, Ser. B, Vol. 32, pp. 102-110, 1970.

[53] D. E. Knuth, \Hu�man's Algorithm via Algebra," Journal of Combinatorial

Theory, Ser. A, Vol. 32, pp. 216-224, 1982.

[54] D. E. Knuth, The Art of Computer Programming, Volume I/Fundamental Al-

gorithms, Third edition, Addison-Wesley, Reading, MA, 1997.

[55] L. T. Kou, \Minimum Variance Hu�man Codes," SIAM Journal on Comput-

ing, Vol. 9, pp. 138-148, 1982; original as Minimal Variance Hu�man Codes,

Research report RC 8333, International Business Machines Corporation, 1980.

[56] S. Kumar and M. Sobel, \Finding a single defective in binomial group testing,"

Journal of American Statistical Association, Vol. 66, pp. 824-828, 1971.

[57] L. L. Larmore, \Height restricted optimal binary trees," SIAM Journal on Com-

puting, Vol. 16, pp. 1115-1123, 1987; original as ICS TR-86-03, Department of

Information and Computer Science, University of California, Irvine, February

1986.

[58] L. L. Larmore, \Minimum Delay Codes," SIAM Journal on Computing, Vol.

18, pp. 82-94, 1989.

[59] L. L. Larmore and D. S. Hirschberg, \A Fast Algorithm for Optimal Length-

Limited Hu�man Codes," Journal of the Association for Computing Machinery,

Vol. 37, pp. 464-473, 1990.

[60] L. L. Larmore and T. M. Przytycka, \Parallel Construction of Trees With Op-

timal Weighted Path Length," Proceedings of the Third ACM Symposium on

Parallel Algorithms and Architectures, pp. 71-80, 1991.

[61] L. L. Larmore and T. M. Przytycka, \A Fast Algorithm for Optimum Height-

Limited Alphabetic Binary-Trees," SIAM Journal on Computing, Vol. 23,

pp. 1283-1312, 1994.

BIBLIOGRAPHY 115

[62] L. L. Larmore and T. M. Przytycka, \A Parallel algorithm for optimum height

limited alphabetic binary trees," Journal of Parallel and Distributed Computing,

Vol. 35, pp. 49-56, 1996.

[63] M. Liddell and A. Mo�at, \Incremental Calculation of Optimal Length-

Restricted Codes," Proceedings, IEEE Data Compression Conference, Snow-

bird, Utah, pp. 182-191, Apr. 2002.

[64] T. Linder, V. Tarokh, and K. Zeger, \Existence of Optimal Pre�x Codes for

In�nite Source Alphabets," IEEE Transactions on Information Theory, Vol. IT-

43, pp. 2026-2028, 1997.

[65] G. Longo and G. Galasso, \An application of informational divergence to Hu�-

man codes," IEEE Transactions on Information Theory, Vol. IT-28, pp. 36-43,

1982.

[66] U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.

[67] B. Marcus, P. Siegel, and R. Roth, An Introduction to Coding for Constrained

Systems, 2000 [Online, http://www.stanford.edu/class/ee392p/, retrieved May

2003]; original in W. C. Hu�man and V. Pless, ed., Handbook of Coding Theory,

Chapter 20, Elsevier Press, New York, NY, 1998.

[68] G. Markowsky, \Best Hu�man Trees," Acta Informatica, Vol. 16, pp. 363-370,

1981.

[69] B. McMillan, \Two inequalities implied by unique decipherability," IRE Trans-

actions on Information Theory, Vol. IT-2, pp. 115-116, 1956.

[70] P. Mendenhall, \Cell phones were rebels' downfall." MSNBC News, Oct. 26,

2002 [Online, http://www.msnbc.com/news/826347.asp, retrieved November

2002].

[71] N. Merhav, G. Seroussi, and M. Weinberger, \Optimal Pre�x Codes for Sources

with Two-Sided Geometric Distributions," IEEE Transactions on Information

Theory, Vol. IT-46, pp. 121-135, 2000.

116 BIBLIOGRAPHY

[72] R. L. Milidi�u and E. S. Laber, \The WARM-UP Algorithm: A Lagrangian Con-

struction of Length Restricted Hu�man Codes," SIAM Journal on Computing,

Vol. 30, pp. 1405-1426, 2000.

[73] H. Minc, \A problem in partitions: Enumeration of elements of a given degree

in the free commutative entropic cyclic groupoid," Proceedings of the Edinburgh

Mathematical Society, Ser. 2, Vol. 11, pp. 223-224, 1959.

[74] A. Mo�at, A. Turpin, and J. Katajainen, \Space-EÆcient Construction of Op-

timal Pre�x Codes," Proceedings, IEEE Data Compression Conference, Snow-

bird, Utah, pp. 192-202, Mar. 28-30, 1995.

[75] H. Murakami, S. Matsumoto, and H. Yamamoto, \Algorithm for Construction

of Variable Length Code with Limited Maximum Word Length," IEEE Trans-

actions on Communications, Vol. COM-32, 1157-1159, 1984.

[76] P. Nath, \On a coding theorem connected with R�enyi entropy," Information

and Control, Vol. 29, pp. 234-242, 1975.

[77] E. Norwood, \The Number of Di�erent Possible Compact Codes," IEEE Trans-

actions on Information Theory, Vol. IT-13, pp. 613-616, 1967.

[78] D. S. Parker, Jr., \Optimality of the Hu�man Algorithm," SIAM Journal on

Computing, Vol. 9, pp. 470-489, 1980; erratum, Vol. 27, p. 317, 1998.

[79] F. Pollaczek, \�Uber eine Aufgabe der Wahrscheinlichkeitstheorie, I-II," Mathe-

matische Zeitschrift, Vol. 32, pp. 64-100 and 729-750, 1930.

[80] A. R�enyi, \Some Fundamental Questions of Information Theory," Magyar Tu-

dom�anyos Akad�emia III. Osztalyanak K�ozlemenyei, pp. 251-282, 1960.

[81] A. R�enyi, \On Measures of Entropy and Information," Proceedings of 4th Berke-

ley Symposium on Mathematical Statistics and Probability, pp. 547-561, 1960.

[82] A. R�enyi, Napl�o az inform�aci�oelm�eletr}ol (A Diary on Information Theory),

Gondolat, Budapest, Hungary, 1969.

BIBLIOGRAPHY 117

[83] B. Schieber, \Computing a minimum-weight k-link path in graphs with the

concave Monge property," Journal of Algorithms, Vol. 29, pp. 204-222, 1998.

[84] E. S. Schwartz, \An Optimum Encoding with Minimum Longest Code and

Total Number of Digits," Information and Control, Vol. 7, pp. 37-44, 1964.

[85] C. E. Shannon, \A Mathematical Theory of Communication," Bell System

Technical Journal, Vol. 27, pp. 379-423, 1948.

[86] A. Shenhar, A Theory of Intrinsic Information and Computation on Topological

Spaces, Ph.D. Thesis, Stanford University, 1976.

[87] J. K. Tamaki, Optimal Binary Trees and Sequences Realized by Eulerian Tri-

angulations, Ph.D. Thesis, Massachusetts Institute of Technology, 1978.

[88] A. Turpin and A. Mo�at, \Practical Length-limited Coding for Large Alpha-

bets," The Computer Journal, Vol. 38, pp. 339-347, 1995.

[89] A. Turpin and A. Mo�at, \EÆcient Implementation of the Package-Merge

Paradigm for Generating Length-Limited Codes," Proceedings of Computing:

The Australasian Theory Symposium, Melbourne, Australia, pp. 187-195, Jan-

uary 29-30, 1996.

[90] P. van Emde Boas, Another NP-Complete Partition Problem and the Complexity

of Computing Short Vectors in a Lattice, Technical Report #81-04, Mathemat-

ical Institute, University of Amsterdam, Amsterdam, Netherlands, 1981.

[91] J. van Leeuwen, \On the construction of Hu�man trees," Proceedings 3rd Inter-

national Colloquium on Automata, Languages, and Programming, University of

Edinburgh, Edinburgh, Scotland, pp. 382-410, 1976.

[92] D. C. Van Voorhis, \Constructing codes with bounded codeword lengths," IEEE

Transactions on Information Theory, Vol. IT-20, pp. 288-290, 1974.

[93] M. Weinberger, G. Seroussi, and G. Sapiro, \The LOCO-I Lossless Image

Compression Algorithm: Principles and Standardization into JPEG-LS," IEEE

118 BIBLIOGRAPHY

Transactions Image Processing, Vol. 9, pp. 1309-1324, 2000; original as Hewlett-

Packard Laboratories Technical Report No. HPL-98-193R1, November 1998,

revised October 1999.

[94] P. Whittle, Risk-sensitive Optimal Control, John Wiley & Sons, Chichester,

West Sussex, UK, 1990.

[95] I. H. Witten, A. Mo�at, and T. Bell, Managing Gigabytes, Second edition,

Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[96] A. D. Wyner, \On the Probability of Bu�er Overow Under an Arbitrary

Bounded Input-Output Distribution," SIAM Journal on Applied Mathematics,

Vol. 27, pp. 544-570, 1974.

[97] H. Yamamoto and T. Itoh, \Competitive Optimality of Source Codes," IEEE

Transactions on Information Theory, Vol. IT-41, pp. 2015-2019, 1995.

[98] C. Ye and R. W. Yeung, \Some Basic Properties of Fix-Free Codes," IEEE

Transactions on Information Theory, Vol. IT-47, pp. 72-87, 2001.

[99] C. Ye and R. W. Yeung, \Redundancy of Hu�man codes," IEEE Transactions

on Information Theory, Vol. IT-48, pp. 2132-2138, 2002.

